Namespaces
Variants
Actions

Difference between revisions of "Quadrature of the circle"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{TEX|done}}
+
{{TEX|done}}{{MSC|51M04}}
The problem of constructing a square of equal area as the given circle; one of the classical Ancient problems on constructions with a ruler and compass. The side of a square equal in area to a circle of radius $r$ has length $r\sqrt\pi$. Thus the problem of the quadrature of the circle reduces to the following: To construct a line of length $\sqrt\pi$. Such a construction cannot be realized with a ruler and compass since $\pi$ is a [[Transcendental number|transcendental number]], as was proved in 1882 by F. Lindemann. However, the problem of the quadrature of a circle is solvable if one extends the means of construction, for example, by using certain transcendental curves, called quadratrices (cf. [[Quadratrix|Quadratrix]]).
+
 
 +
The problem of constructing a square of equal area as the given circle; one of the classical Ancient problems on constructions with a ruler and compass. The side of a square equal in area to a circle of radius $r$ has length $r\sqrt\pi$. Thus the problem of the quadrature of the circle reduces to the following: To construct a line of length $\sqrt\pi$. Such a construction cannot be realized with a ruler and compass since $\pi$ is a [[Transcendental number|transcendental number]], as was proved in 1882 by F. Lindemann. However, the problem of the quadrature of a circle is solvable if one extends the means of construction, for example, by using certain transcendental curves, called quadratrices (cf. [[Quadratrix]]).
  
 
====References====
 
====References====
Line 8: Line 9:
  
 
====Comments====
 
====Comments====
The Ancient problem of squaring the circle led to a problem in measure theory which asks if a disc and a square of equal area are equi-decomposable, i.e. if the disc can be decomposed into a finite number of disjoint subsets which can be reassembled to form a square, [[#References|[a6]]]. Cf. [[Tarski problem|Tarski problem]] for results on this problem.
+
The Ancient problem of squaring the circle led to a problem in measure theory which asks if a disc and a square of equal area are equi-decomposable, i.e. if the disc can be decomposed into a finite number of disjoint subsets which can be reassembled to form a square, [[#References|[a6]]]. Cf. [[Tarski problem]] for results on this problem.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Bieberbach,  "Theorie der geometrischen Konstruktionen" , Birkhäuser  (1952)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  F. Klein,  et al.,  "Famous problems and other monographs" , Chelsea, reprint  (1962)  (Translated from German)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I. Stewart,  "Galois theory" , Chapman &amp; Hall  (1973)  pp. Chapt. 5</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B.L. van der Waerden,  "Science awakening" , '''1''' , Noordhoff  (1975)  (Translated from Dutch)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  U. Dudley,  "A budget of trisections" , Springer  (1987)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  S. Wagon,  "Circle squaring in the twentieth century"  ''Math. Intelligencer'' , '''3''' :  4  (1981)  pp. 176–181</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  E.W. Hobson,  "Squaring the circle" , ''Squaring the circle and other monographs'' , Chelsea, reprint  (1953)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  O. Perron,  "Irrationalzahlen" , de Gruyter  (1960)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  W.W.R. Ball,  H.S.M. Coxeter,  "Mathematical recreations and essays" , Dover, reprint  (1987)  pp. 347–359</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Bieberbach,  "Theorie der geometrischen Konstruktionen" , Birkhäuser  (1952)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  F. Klein,  et al.,  "Famous problems and other monographs" , Chelsea, reprint  (1962)  (Translated from German)</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  I. Stewart,  "Galois theory" , Chapman &amp; Hall  (1973)  pp. Chapt. 5</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  B.L. van der Waerden,  "Science awakening" , '''1''' , Noordhoff  (1975)  (Translated from Dutch)</TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top">  U. Dudley,  "A budget of trisections" , Springer  (1987)</TD></TR>
 +
<TR><TD valign="top">[a6]</TD> <TD valign="top">  S. Wagon,  "Circle squaring in the twentieth century"  ''Math. Intelligencer'' , '''3''' :  4  (1981)  pp. 176–181</TD></TR>
 +
<TR><TD valign="top">[a7]</TD> <TD valign="top">  E.W. Hobson,  "Squaring the circle" , ''Squaring the circle and other monographs'' , Chelsea, reprint  (1953)</TD></TR>
 +
<TR><TD valign="top">[a8]</TD> <TD valign="top">  O. Perron,  "Irrationalzahlen" , de Gruyter  (1960)</TD></TR>
 +
<TR><TD valign="top">[a9]</TD> <TD valign="top">  W.W.R. Ball,  H.S.M. Coxeter,  "Mathematical recreations and essays" , Dover, reprint  (1987)  pp. 347–359</TD></TR>
 +
</table>

Latest revision as of 19:15, 17 December 2015

2020 Mathematics Subject Classification: Primary: 51M04 [MSN][ZBL]

The problem of constructing a square of equal area as the given circle; one of the classical Ancient problems on constructions with a ruler and compass. The side of a square equal in area to a circle of radius $r$ has length $r\sqrt\pi$. Thus the problem of the quadrature of the circle reduces to the following: To construct a line of length $\sqrt\pi$. Such a construction cannot be realized with a ruler and compass since $\pi$ is a transcendental number, as was proved in 1882 by F. Lindemann. However, the problem of the quadrature of a circle is solvable if one extends the means of construction, for example, by using certain transcendental curves, called quadratrices (cf. Quadratrix).

References

[1] Yu.I. Manin, "Ueber die Lösbarkeit von Konstruktionsaufgaben mit Zirkel und Lineal" , Enzyklopaedie der Elementarmathematik , 4. Geometrie , Deutsch. Verlag Wissenschaft. (1969) pp. 205–230 (Translated from Russian)


Comments

The Ancient problem of squaring the circle led to a problem in measure theory which asks if a disc and a square of equal area are equi-decomposable, i.e. if the disc can be decomposed into a finite number of disjoint subsets which can be reassembled to form a square, [a6]. Cf. Tarski problem for results on this problem.

References

[a1] L. Bieberbach, "Theorie der geometrischen Konstruktionen" , Birkhäuser (1952)
[a2] F. Klein, et al., "Famous problems and other monographs" , Chelsea, reprint (1962) (Translated from German)
[a3] I. Stewart, "Galois theory" , Chapman & Hall (1973) pp. Chapt. 5
[a4] B.L. van der Waerden, "Science awakening" , 1 , Noordhoff (1975) (Translated from Dutch)
[a5] U. Dudley, "A budget of trisections" , Springer (1987)
[a6] S. Wagon, "Circle squaring in the twentieth century" Math. Intelligencer , 3 : 4 (1981) pp. 176–181
[a7] E.W. Hobson, "Squaring the circle" , Squaring the circle and other monographs , Chelsea, reprint (1953)
[a8] O. Perron, "Irrationalzahlen" , de Gruyter (1960)
[a9] W.W.R. Ball, H.S.M. Coxeter, "Mathematical recreations and essays" , Dover, reprint (1987) pp. 347–359
How to Cite This Entry:
Quadrature of the circle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quadrature_of_the_circle&oldid=31469
This article was adapted from an original article by E.G. Sobolevskaya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article