|
|
Line 1: |
Line 1: |
− | A fundamental operation in the [[Exterior algebra|exterior algebra]] of tensors defined on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e0371301.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e0371302.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e0371303.png" />.
| + | <!-- |
| + | e0371301.png |
| + | $#A+1 = 58 n = 0 |
| + | $#C+1 = 58 : ~/encyclopedia/old_files/data/E037/E.0307130 Exterior product |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e0371304.png" /> be a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e0371305.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e0371306.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e0371307.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e0371308.png" />- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e0371309.png" />-forms:
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713010.png" /></td> </tr></table>
| + | A fundamental operation in the [[Exterior algebra|exterior algebra]] of tensors defined on an $ n $- |
| + | dimensional vector space $ V $ |
| + | over a field $ K $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713011.png" /></td> </tr></table>
| + | Let $ e _ {1} \dots e _ {n} $ |
| + | be a basis of $ V $, |
| + | and let $ a $ |
| + | and $ b $ |
| + | be $ p $- |
| + | and $ q $- |
| + | forms: |
| | | |
− | The exterior product of the forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713013.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713014.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713015.png" /> obtained by [[Alternation|alternation]] of the tensor product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713016.png" />. The form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713017.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713018.png" />; its coordinates are skew-symmetric:
| + | $$ |
| + | a = a ^ {i _ {1} \dots {i _ {p} } } |
| + | e _ {i _ {1} } \otimes \dots \otimes e _ {i _ {p} } , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713019.png" /></td> </tr></table>
| + | $$ |
| + | b = b ^ {j _ {1} \dots {j _ {q} } } e _ {j _ {1} } \otimes \dots \otimes e _ {j _ {q} } . |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713020.png" /> are the components of the generalized [[Kronecker symbol|Kronecker symbol]]. The exterior product of covariant tensors is defined in a similar manner. | + | The exterior product of the forms $ a $ |
| + | and $ b $ |
| + | is the $ ( p + q) $- |
| + | form $ c $ |
| + | obtained by [[Alternation|alternation]] of the tensor product $ a \otimes b $. |
| + | The form $ c $ |
| + | is denoted by $ a \wedge b $; |
| + | its coordinates are skew-symmetric: |
| + | |
| + | $$ |
| + | c ^ {k _ {1} \dots k _ {p+ q } } = \ |
| + | |
| + | \frac{1}{p! q! } |
| + | |
| + | \delta _ {i _ {1} \dots i _ {p} j _ {1} \dots j _ {q} } ^ {k _ {1} \dots \dots \dots k _ {p+ q } } |
| + | a ^ {i _ {1} \dots i _ {p} } b ^ {j _ {1} \dots j _ {q} } , |
| + | $$ |
| + | |
| + | where $ \delta _ {i _ {1} \dots j _ {q} } ^ {k _ {1} \dots k _ {p+} q } $ |
| + | are the components of the generalized [[Kronecker symbol|Kronecker symbol]]. The exterior product of covariant tensors is defined in a similar manner. |
| | | |
| The basic properties of the exterior product are listed below: | | The basic properties of the exterior product are listed below: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713022.png" /> (homogeneity); | + | 1) $ ( ka) \wedge b = a \wedge ( kb) = k( a \wedge b) $, |
| + | $ k \in K $( |
| + | homogeneity); |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713023.png" /> (distributivity); | + | 2) $ ( a+ b) \wedge c = a \wedge c + b \wedge c $( |
| + | distributivity); |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713024.png" /> (associativity). | + | 3) $ ( a \wedge b ) \wedge c = a \wedge ( b \wedge c) $( |
| + | associativity). |
| | | |
− | 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713025.png" />; if the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713026.png" /> is distinct from two, the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713027.png" /> is valid for any form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713028.png" /> of odd valency. | + | 4) $ a \wedge b = (- 1) ^ {pq} b \wedge a $; |
| + | if the characteristic of $ K $ |
| + | is distinct from two, the equation $ a \wedge a = 0 $ |
| + | is valid for any form $ a $ |
| + | of odd valency. |
| | | |
− | The exterior product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713029.png" /> vectors is said to be a decomposable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713031.png" />-vector. Any [[Poly-vector|poly-vector]] of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713032.png" /> is a linear combination of decomposable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713033.png" />-vectors. The components of this combination are the (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713034.png" />)-minors of the (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713035.png" />)-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713038.png" />, of the coefficients of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713039.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713040.png" /> their exterior product has the form | + | The exterior product of $ s $ |
| + | vectors is said to be a decomposable $ s $- |
| + | vector. Any [[Poly-vector|poly-vector]] of dimension $ s $ |
| + | is a linear combination of decomposable $ s $- |
| + | vectors. The components of this combination are the ( $ s \times s $)- |
| + | minors of the ( $ n \times s $)- |
| + | matrix $ ( a _ {j} ^ {i} ) $, |
| + | $ 1 \leq i \leq n $, |
| + | $ 1 \leq j \leq s $, |
| + | of the coefficients of the vectors $ a _ {1} \dots a _ {s} $. |
| + | If $ s = n $ |
| + | their exterior product has the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713041.png" /></td> </tr></table>
| + | $$ |
| + | \alpha _ {n} = a _ {1} \wedge \dots \wedge a _ {n} = \ |
| + | \mathop{\rm det} ( a _ {j} ^ {i} ) e _ {1} \wedge \dots \wedge e _ {n} . |
| + | $$ |
| | | |
− | Over fields of characteristic distinct from two, the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713042.png" /> is necessary and sufficient for vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713043.png" /> to be linearly dependent. A non-zero decomposable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713044.png" />-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713045.png" /> defines in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713046.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713047.png" />-dimensional oriented subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713048.png" />, parallel to the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713049.png" />, and the [[Parallelotope|parallelotope]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713050.png" /> formed by the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713051.png" /> issuing from one point, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713052.png" />. The conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713054.png" /> are equivalent. | + | Over fields of characteristic distinct from two, the equation $ a _ {1} \wedge \dots \wedge a _ {n} = 0 $ |
| + | is necessary and sufficient for vectors $ a _ {1} \dots a _ {n} $ |
| + | to be linearly dependent. A non-zero decomposable $ s $- |
| + | vector $ \alpha _ {s} $ |
| + | defines in $ V $ |
| + | an $ s $- |
| + | dimensional oriented subspace $ A $, |
| + | parallel to the vectors $ a _ {1} \dots a _ {s} $, |
| + | and the [[Parallelotope|parallelotope]] in $ A $ |
| + | formed by the vectors $ a _ {1} \dots a _ {s} $ |
| + | issuing from one point, denoted by $ [ a _ {1} \dots a _ {s} ] $. |
| + | The conditions $ a \in A $ |
| + | and $ \alpha _ {s} \wedge a = 0 $ |
| + | are equivalent. |
| | | |
| For references see [[Exterior algebra|Exterior algebra]]. | | For references see [[Exterior algebra|Exterior algebra]]. |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | Instead of exterior product the phrase "outer product" is sometimes used. The condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713055.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713056.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713058.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037130/e03713059.png" /> is sometimes called graded commutativity. | + | Instead of exterior product the phrase "outer product" is sometimes used. The condition $ a \wedge b = (- 1) ^ {pq} b \wedge a $ |
| + | for $ a $ |
| + | of degree $ p $ |
| + | and $ b $ |
| + | of degree $ q $ |
| + | is sometimes called graded commutativity. |
A fundamental operation in the exterior algebra of tensors defined on an $ n $-
dimensional vector space $ V $
over a field $ K $.
Let $ e _ {1} \dots e _ {n} $
be a basis of $ V $,
and let $ a $
and $ b $
be $ p $-
and $ q $-
forms:
$$
a = a ^ {i _ {1} \dots {i _ {p} } }
e _ {i _ {1} } \otimes \dots \otimes e _ {i _ {p} } ,
$$
$$
b = b ^ {j _ {1} \dots {j _ {q} } } e _ {j _ {1} } \otimes \dots \otimes e _ {j _ {q} } .
$$
The exterior product of the forms $ a $
and $ b $
is the $ ( p + q) $-
form $ c $
obtained by alternation of the tensor product $ a \otimes b $.
The form $ c $
is denoted by $ a \wedge b $;
its coordinates are skew-symmetric:
$$
c ^ {k _ {1} \dots k _ {p+ q } } = \
\frac{1}{p! q! }
\delta _ {i _ {1} \dots i _ {p} j _ {1} \dots j _ {q} } ^ {k _ {1} \dots \dots \dots k _ {p+ q } }
a ^ {i _ {1} \dots i _ {p} } b ^ {j _ {1} \dots j _ {q} } ,
$$
where $ \delta _ {i _ {1} \dots j _ {q} } ^ {k _ {1} \dots k _ {p+} q } $
are the components of the generalized Kronecker symbol. The exterior product of covariant tensors is defined in a similar manner.
The basic properties of the exterior product are listed below:
1) $ ( ka) \wedge b = a \wedge ( kb) = k( a \wedge b) $,
$ k \in K $(
homogeneity);
2) $ ( a+ b) \wedge c = a \wedge c + b \wedge c $(
distributivity);
3) $ ( a \wedge b ) \wedge c = a \wedge ( b \wedge c) $(
associativity).
4) $ a \wedge b = (- 1) ^ {pq} b \wedge a $;
if the characteristic of $ K $
is distinct from two, the equation $ a \wedge a = 0 $
is valid for any form $ a $
of odd valency.
The exterior product of $ s $
vectors is said to be a decomposable $ s $-
vector. Any poly-vector of dimension $ s $
is a linear combination of decomposable $ s $-
vectors. The components of this combination are the ( $ s \times s $)-
minors of the ( $ n \times s $)-
matrix $ ( a _ {j} ^ {i} ) $,
$ 1 \leq i \leq n $,
$ 1 \leq j \leq s $,
of the coefficients of the vectors $ a _ {1} \dots a _ {s} $.
If $ s = n $
their exterior product has the form
$$
\alpha _ {n} = a _ {1} \wedge \dots \wedge a _ {n} = \
\mathop{\rm det} ( a _ {j} ^ {i} ) e _ {1} \wedge \dots \wedge e _ {n} .
$$
Over fields of characteristic distinct from two, the equation $ a _ {1} \wedge \dots \wedge a _ {n} = 0 $
is necessary and sufficient for vectors $ a _ {1} \dots a _ {n} $
to be linearly dependent. A non-zero decomposable $ s $-
vector $ \alpha _ {s} $
defines in $ V $
an $ s $-
dimensional oriented subspace $ A $,
parallel to the vectors $ a _ {1} \dots a _ {s} $,
and the parallelotope in $ A $
formed by the vectors $ a _ {1} \dots a _ {s} $
issuing from one point, denoted by $ [ a _ {1} \dots a _ {s} ] $.
The conditions $ a \in A $
and $ \alpha _ {s} \wedge a = 0 $
are equivalent.
For references see Exterior algebra.
Instead of exterior product the phrase "outer product" is sometimes used. The condition $ a \wedge b = (- 1) ^ {pq} b \wedge a $
for $ a $
of degree $ p $
and $ b $
of degree $ q $
is sometimes called graded commutativity.