Difference between revisions of "Weyl criterion"
(converting to LaTeX) |
(better) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | A fundamental criterion used to solve the problem of the [[ | + | {{TEX|done}} |
+ | |||
+ | A fundamental criterion used to solve the problem of the uniform [[distribution modulo one]] of an infinite sequence $(x_n)$ of arbitrary real numbers $x_n$ modulo 1, i.e. to establish that the limit as $N \rightarrow \infty$ of | ||
$$ | $$ | ||
Line 5: | Line 7: | ||
$$ | $$ | ||
− | exists and is equal to $\beta - \alpha$, where $ 0 \le \alpha \le \beta \le 1 $ and $\{x_n\}$ is the fractional part of $x_n$ (cf. [[ | + | exists and is equal to $\beta - \alpha$, where $ 0 \le \alpha \le \beta \le 1 $ and $\{x_n\}$ is the fractional part of $x_n$ (cf. [[Fractional part of a number]]). Weyl's criterion states that the sequence $(x_n)$ is uniformly distributed modulo 1 if and only if |
$$ | $$ | ||
Line 11: | Line 13: | ||
$$ | $$ | ||
− | for all integers $m \ne 0$. Demonstrated in 1916 by H. Weyl. See [[ | + | for all integers $m \ne 0$. Demonstrated in 1916 by H. Weyl. See [[Weyl method]]. |
+ | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.W.S. Cassels, "An introduction to diophantine approximation" , Cambridge | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> J.W.S. Cassels, "An introduction to diophantine approximation" , Cambridge University Press (1957)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> H. Weyl, "Ueber die Gleichverteilung von Zahlen mod. Eins,". ''Math. Ann.'' '''77''', no.3 (1916) 313–352. {{DOI|10.1007/BF01475864}}</TD></TR> | ||
+ | </table> |
Latest revision as of 22:16, 12 March 2018
A fundamental criterion used to solve the problem of the uniform distribution modulo one of an infinite sequence $(x_n)$ of arbitrary real numbers $x_n$ modulo 1, i.e. to establish that the limit as $N \rightarrow \infty$ of
$$ \sum_{n \le N : \alpha \le \{x_n\} \le \beta} \frac{1}{N} $$
exists and is equal to $\beta - \alpha$, where $ 0 \le \alpha \le \beta \le 1 $ and $\{x_n\}$ is the fractional part of $x_n$ (cf. Fractional part of a number). Weyl's criterion states that the sequence $(x_n)$ is uniformly distributed modulo 1 if and only if
$$ \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N \exp(2\pi i m x_n) = 0 $$
for all integers $m \ne 0$. Demonstrated in 1916 by H. Weyl. See Weyl method.
References
[1] | J.W.S. Cassels, "An introduction to diophantine approximation" , Cambridge University Press (1957) |
[2] | H. Weyl, "Ueber die Gleichverteilung von Zahlen mod. Eins,". Math. Ann. 77, no.3 (1916) 313–352. DOI 10.1007/BF01475864 |
Weyl criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weyl_criterion&oldid=30171