Namespaces
Variants
Actions

Difference between revisions of "Vinogradov method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Started TeX)
(Category:Number theory)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
{{TEX|done}}
 
A new method for estimating trigonometric sums (see [[Trigonometric sums, method of|Trigonometric sums, method of]]). By Vinogradov's method one may obtain very accurate estimates of a wide class of trigonometric sums, in which the summation variable runs through a sequence of integers, prime numbers, etc. In this way many classical problems in [[Analytic number theory|analytic number theory]] can be solved (the distribution of the fractional parts of a wide class of functions, the distribution of prime numbers in series of natural numbers, additive problems such as the Waring and Goldbach problems, etc.).
 
A new method for estimating trigonometric sums (see [[Trigonometric sums, method of|Trigonometric sums, method of]]). By Vinogradov's method one may obtain very accurate estimates of a wide class of trigonometric sums, in which the summation variable runs through a sequence of integers, prime numbers, etc. In this way many classical problems in [[Analytic number theory|analytic number theory]] can be solved (the distribution of the fractional parts of a wide class of functions, the distribution of prime numbers in series of natural numbers, additive problems such as the Waring and Goldbach problems, etc.).
  
One distinguishes two parts in Vinogradov's method: The method of estimating Weyl sums (cf. [[Weyl sum|Weyl sum]]) and the method of estimating trigonometric sums with prime numbers. Both these parts utilize Vinogradov's basic idea — to wit, the idea of smoothing double trigonometric sums, which may be described as follows. Given the sum
+
One distinguishes two parts in Vinogradov's method: The method of estimating Weyl sums (cf. [[Weyl sum|Weyl sum]]) and the method of estimating trigonometric sums with prime numbers. Both these parts utilize Vinogradov's basic idea — to wit, the idea of smoothing double trigonometric sums, which may be described as follows. Given the sum\[ W=\sum_u\sum_v\psi_1(u)\psi_2(v) e^{2\pi i\alpha uv},\]where the summation variables $u$ and $v$ run through the values of (not necessarily successive) integers in respective sets $U$ and $V$, $A<u<2A$. Let $\psi_1(u)$ and $\psi_2(v)$ be arbitrary complex-valued functions. Then
 
 
\[ W=\sum_u\sum_v\psi_1(u)\psi_2(v) e^{2\pi i\alpha uv},\]
 
 
 
where the summation variables $u$ and $v$ run through the values of (not necessarily successive) integers in respective sets $U$ and $V$, $A<u<2A$. Let $\psi_1(u)$ and $\psi_2(v)$ be arbitrary complex-valued functions. Then
 
  
 
\[ \lvert W\rvert^2\leq B\sum_{A< u\leq 2A}\left\lvert \sum_v\psi_2(v)e^{2\pi i\alpha uv}\right\rvert^2,\]
 
\[ \lvert W\rvert^2\leq B\sum_{A< u\leq 2A}\left\lvert \sum_v\psi_2(v)e^{2\pi i\alpha uv}\right\rvert^2,\]
Line 14: Line 11:
  
 
==Vinogradov's method for estimating Weyl sums.==
 
==Vinogradov's method for estimating Weyl sums.==
 +
 
The sums to be estimated are
 
The sums to be estimated are
  
Line 22: Line 20:
 
\begin{align*}
 
\begin{align*}
 
S&=Y^{-1}\sum_{1\leq x\leq P}\sum_{1\leq y\leq Y}e^{2\pi if(x+y)}+2\theta Y\\
 
S&=Y^{-1}\sum_{1\leq x\leq P}\sum_{1\leq y\leq Y}e^{2\pi if(x+y)}+2\theta Y\\
&=Y^{-1}\sum_{1\leq x\leq P}\sum_{1\leq y\leq Y}e^{2\pi i\mathfrak{A}}+2\theta Y=Y^{-1}W+2\theta Y,\]
+
&=Y^{-1}\sum_{1\leq x\leq P}\sum_{1\leq y\leq Y}e^{2\pi i\mathfrak{A}}+2\theta Y=Y^{-1}W+2\theta Y,
 +
\end{align*}
  
 
where $\mathfrak{A}=\alpha_{n+1}x^{n+1}+A_n(y)x^n+\cdots+A_1(y)x+A_0(y)$, the letter $W$ denotes the double sum over $x$ and $y$, and $\lvert \theta\rvert\leq 1$. Moreover, letting $\mathfrak{B}$ denote the expression
 
where $\mathfrak{A}=\alpha_{n+1}x^{n+1}+A_n(y)x^n+\cdots+A_1(y)x+A_0(y)$, the letter $W$ denotes the double sum over $x$ and $y$, and $\lvert \theta\rvert\leq 1$. Moreover, letting $\mathfrak{B}$ denote the expression
Line 34: Line 33:
 
for arbitrary $B_n,\ldots,B_1$ from the domain
 
for arbitrary $B_n,\ldots,B_1$ from the domain
  
\[\lvert B_n\rvert\leq L_n=P^{-n-n^2/4},\textrm{\,\,\,\,\,}\ldots\textrm{\,\,\,\,}\lvert B_1\rvert\leq L_1=P^{-1-n^2/4}.\]
+
\[\lvert B_n\rvert\leq L_n=P^{-n-n^2/4},\ldots,\lvert B_1\rvert\leq L_1=P^{-1-n^2/4}.\]
  
 
For any integer $k\geq 1$:
 
For any integer $k\geq 1$:
  
\[ \lvert W\rvert^{2k}\leq 2^kY^{2k-1}\sum_{1\leq y\leq Y}\int_{\lvert B_n\rvert\leq L_n}\cdots \int_{\lvert B_1\rvert\leq L_1}
+
\begin{align*}
\left\lvert \sum_{1\leq x\leq P} e^{2\pi i\mathfrak{B}}\right\rvert\mathrm{d}B_n\cdots\mathrm{d}B_1
+
\lvert W\rvert^{2k}
+2^k(Y_nP^{1-n^2/4})^{2k}\]
+
&\leq 2^kY^{2k-1}\sum_{1\leq y\leq Y}\int_{\lvert B_n\rvert\leq L_n}\cdots \int_{\lvert B_1\rvert\leq L_1}\left\lvert \sum_{1\leq x\leq P} e^{2\pi i\mathfrak{B}}\right\rvert\mathrm{d}B_n\cdots\mathrm{d}B_1+2^k(Y_nP^{1-n^2/4})^{2k}\\
\[\leq 2^kY^{2k-1}G(Y)\int_0^1\cdots \int_0^1\left\lvert \sum_{1\leq x\leq P}e^{2\pi i\mathfrak{C}}\right\rvert^{2k}
+
&\leq 2^kY^{2k-1}G(Y)\int_0^1\cdots \int_0^1\left\lvert \sum_{1\leq x\leq P}e^{2\pi i\mathfrak{C}}\right\rvert^{2k}\mathrm{d}\gamma_n\cdots\mathrm{d}\gamma_1+2^k(Y_nP^{1-n^2/4})^{2k},
\mathrm{d}\gamma_n\cdots\mathrm{d}\gamma_1+2^k(Y_nP^{1-n^2/4})^{2k},\]
+
\end{align*}
 +
 
  
 
where $\mathfrak{C}=\alpha_{n+1}x^{n+1}+\gamma_nx^n+\cdots+\gamma_1x$ and $G(Y)$ is the maximum number of cases of coincidence of points with coordinates
 
where $\mathfrak{C}=\alpha_{n+1}x^{n+1}+\gamma_nx^n+\cdots+\gamma_1x$ and $G(Y)$ is the maximum number of cases of coincidence of points with coordinates
 +
  
 
\[ \{A_n(y)+B_n\},\{A_{n-1}(y)+B_{n-1}\},\ldots,\{A_1(y)+B_1\}.\]
 
\[ \{A_n(y)+B_n\},\{A_{n-1}(y)+B_{n-1}\},\ldots,\{A_1(y)+B_1\}.\]
Line 51: Line 52:
 
Here the braces denote the fractional part of the enclosed number, while $y$ varies between 1 and $Y$, and
 
Here the braces denote the fractional part of the enclosed number, while $y$ varies between 1 and $Y$, and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669041.png" /></td> </tr></table>
 
  
If the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669042.png" /> of the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669043.png" /> have certain arithmetical properties, it is possible to obtain the estimate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669044.png" />. In addition, the last integral does not exceed the number of solutions of the system of equations:
+
\[\lvert B_n\rvert\leq L_n,\ldots,\lvert B_1\rvert\leq L_1.\]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669045.png" /></td> </tr></table>
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669046.png" /></td> </tr></table>
+
If the coefficients $\alpha_{n+1},\ldots,\alpha_2$ of the polynomial $f(x)$ have certain arithmetical properties, it is possible to obtain the estimate $G(Y)\leq Y^{0.9}$. In addition, the last integral does not exceed the number of solutions of the system of equations:
 +
 
 +
 
 +
\begin{align*}
 +
x_1^n+\cdots+x_k^n &= y_1^n+\cdots+y_k^n,\\
 +
x_1^{n-1}+\cdots+x_k^{n-1} &= y_1^{n-1}+\cdots+y_k^{n-1},\\
 +
\vdots\\
 +
x_1+\cdots+x_k &= y_1+\cdots+y_k,
 +
\end{align*}
 +
\[ 1\leq x_1,\ldots,y_k\leq P.\]
 +
 
  
 
The number of solutions of this system is estimated using the [[Vinogradov theorem about the average|Vinogradov theorem about the average]], which is fundamental in Vinogradov's method for estimating Weyl sums (cf. [[Vinogradov estimates|Vinogradov estimates]]).
 
The number of solutions of this system is estimated using the [[Vinogradov theorem about the average|Vinogradov theorem about the average]], which is fundamental in Vinogradov's method for estimating Weyl sums (cf. [[Vinogradov estimates|Vinogradov estimates]]).
 +
  
 
==Vinogradov's method for estimating trigonometric sums with prime numbers.==
 
==Vinogradov's method for estimating trigonometric sums with prime numbers.==
 +
 +
 
The sums to be estimated are
 
The sums to be estimated are
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669047.png" /></td> </tr></table>
 
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669048.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669049.png" /> are real numbers. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669050.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669051.png" />. Using the well-known property of the Möbius function, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669052.png" /> is reduced to a small number of sums (this number is not larger than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669053.png" />) of the form
+
\[ S' = \sum_{p\leq P}e^{2\pi i f(p) },\]
 +
 
 +
 
 +
where $f(p)=\alpha_np^n+\cdots+\alpha_1p$, and $\alpha_n,\ldots,\alpha_1$ are real numbers. Let $D=\prod_{p\leq H}p$, where $H\leq P^{0.25}$. Using the well-known property of the Möbius function, $S'$ is reduced to a small number of sums (this number is not larger than $\ln P/\ln H$) of the form
 +
 
 +
 
 +
\[W_S=\sum_{d_1\mid D}\cdots \sum_{d_s\mid D}\sum_{m_1>0}\cdots\sum_{m_s>0}\mu(d_1)\cdots\mu(d_s)e^{2\pi i f(m_1\cdots m_sd_1\cdots d_s)},\]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669054.png" /></td> </tr></table>
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669055.png" /></td> </tr></table>
+
where $m_1\cdots m_sd_1\cdots d_s\leq P$. In the multiple sum $W_S$ the variables $m_1,\ldots,m_s$ run through the entire summation intervals. The sums $W_S$ in which the summation interval over at least one variable $m$ is long are estimated by Vinogradov's method for estimating Weyl sums. Otherwise the summation interval over one of the summation variables $d$, $d\mid D$, will be long. In such a case one uses the following lemma of Vinogradov which, together with the idea of smoothing double sums, is fundamental to Vinogradov's method for estimating trigonometric sums with prime numbers.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669056.png" />. In the multiple sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669057.png" /> the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669058.png" /> run through the entire summation intervals. The sums <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669059.png" /> in which the summation interval over at least one variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669060.png" /> is long are estimated by Vinogradov's method for estimating Weyl sums. Otherwise the summation interval over one of the summation variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669062.png" />, will be long. In such a case one uses the following lemma of Vinogradov which, together with the idea of smoothing double sums, is fundamental to Vinogradov's method for estimating trigonometric sums with prime numbers.
 
  
Lemma. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669063.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669064.png" /> be the product of all primes not larger than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669065.png" />; all divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669066.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669067.png" /> not larger than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669068.png" /> may then be distributed over fewer than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669069.png" /> sets with the following properties:
+
Lemma. Let $0\leq \sigma\leq 1/3$ and let $D$ be the product of all primes not larger than $x^{\sigma}$; all divisors $d$ of $D$ not larger than $x$ may then be distributed over fewer than $x^{\epsilon}$ sets with the following properties:
  
1) the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669070.png" /> belonging to one of these sets have the same number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669071.png" /> of prime factors and therefore the same value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669072.png" />;
 
  
2) one of these sets the so-called simplest set — consists of the single number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669073.png" />. For each of the remaining sets there is a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669074.png" /> such that all numbers of this set satisfy the relation
+
1) the numbers $d$ belonging to one of these sets have the same number $\beta$ of prime factors and therefore the same value of $\mu(d)=(-1)^\beta$;
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669075.png" /></td> </tr></table>
 
  
3) for each set of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669076.png" /> other than the simplest set there exist, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669078.png" />, two sets of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669079.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669080.png" />, with corresponding numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669081.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669082.png" /> satisfying the relations
+
2) one of these sets — the so-called simplest set — consists of the single number $d=1$. For each of the remaining sets there is a number $\phi$ such that all numbers of this set satisfy the relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669083.png" /></td> </tr></table>
+
\[\phi< d\leq \phi^{1+\epsilon_1},\hspace{1cm} \epsilon_1=\epsilon_1(\epsilon);\]
  
and such that, for a certain natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669084.png" />, one obtains each number in the chosen set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669085.png" /> times if, out of all the products <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669086.png" /> one selects only those which satisfy the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669087.png" />.
+
3) for each set of numbers $d$ other than the simplest set there exist, for any $U$, $0\leq U\leq \phi$, two sets of numbers $d'$ and $d''$, with corresponding numbers $\phi'$ and $\phi''$ satisfying the relations
  
The application of point 3) of this lemma, with a suitable value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669088.png" />, yields
+
\[U<\phi'\leq Ux^{\sigma},\hspace{1cm}\phi'\phi''=\phi,\]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669089.png" /></td> </tr></table>
+
and such that, for a certain natural number $B$, one obtains each number in the chosen set $B$ times if, out of all the products $d'd''$ one selects only those which satisfy the relation $(d',d'')=1$.
  
where the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669090.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669091.png" /> run through long summation intervals. It is possible to deduce Vinogradov's estimate for trigonometric sums with prime numbers from this lemma (cf. [[Vinogradov estimates|Vinogradov estimates]]).
+
The application of point 3) of this lemma, with a suitable value of $U$, yields
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669092.png" /> can be properly approximated, in a certain sense, by a polynomial, Vinogradov's method can be used to estimate sums of the type
+
\[ W_S=\sum_u\sum_v\psi_1(u)\psi_2(v)e^{2\pi i f(uv) },\]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669093.png" /></td> </tr></table>
+
where the variables $u$ and $v$ run through long summation intervals. It is possible to deduce Vinogradov's estimate for trigonometric sums with prime numbers from this lemma (cf. [[Vinogradov estimates|Vinogradov estimates]]).
 +
 
 +
If $F(x)$ can be properly approximated, in a certain sense, by a polynomial, Vinogradov's method can be used to estimate sums of the type
 +
 
 +
\[S=\sum_{1\leq x\leq P}e^{2\pi i F(x)},\hspace{1cm} S'=\sum_{p\leq P}e^{2\pi i F(p)}\]
  
 
(see [[#References|[2]]], ). Sums of the type
 
(see [[#References|[2]]], ). Sums of the type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669094.png" /></td> </tr></table>
+
\[ \sum_{p\leq P}\chi(p+a),\hspace{1cm} \sum_{1\leq n\leq N}\mu(n)\chi(n+a)\]
  
and other types can also be estimated by the method. It is possible in this way to solve problems on the distribution of power residues, primitive roots, etc., in sequences of the type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669095.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669096.png" /> is a given integer, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669097.png" /> runs through the successive prime numbers [[#References|[3]]], [[#References|[5]]]. For the application of Vinogradov's method in analytic number theory see [[#References|[1]]], [[#References|[2]]], , [[#References|[5]]], [[#References|[6]]].
+
and other types can also be estimated by the method. It is possible in this way to solve problems on the distribution of power residues, primitive roots, etc., in sequences of the type $p+a$, where $a>0$ is a given integer, while $p$ runs through the successive prime numbers [[#References|[3]]], [[#References|[5]]]. For the application of Vinogradov's method in analytic number theory see [[#References|[1]]], [[#References|[2]]], , [[#References|[5]]], [[#References|[6]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Vinogradov,  "The method of trigonometric sums in the theory of numbers" , Interscience  (1954)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Vinogradov,  "Selected works" , Springer  (1985)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.M. Vinogradov,  "Estimates of a sum, distribution of primes in an arithmetic series"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''30'''  (1966)  pp. 481–496  (In Russian)</TD></TR><TR><TD valign="top">[4a]</TD> <TD valign="top">  A.A. Karatsuba,  "Estimates for trigonometric sums by Vinogradov's method, and applications"  ''Proc. Steklov Inst. Math.'' , '''112'''  (1971)  pp. 251–265  ''Trudy Mat. Inst. Steklov.'' , '''112'''  (1971)  pp. 241–255</TD></TR><TR><TD valign="top">[4b]</TD> <TD valign="top">  A.A. Karatsuba,  "On some problems of prime number theory connected with I.M. Vinogradov's method"  ''Proc. Steklov Inst. Math.'' , '''132'''  (1973)  pp. 293–298  ''Trudy Mat. Inst. Steklov.'' , '''132'''  (1973)  pp. 257–261</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  L.-K. Hua,  "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' :  2  (1959)  (Heft 13, Teil 1)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  K. Chandrasekharan,  "Arithmetical functions" , Springer  (1970)</TD></TR></table>
 
  
  
 +
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Vinogradov,  "The method of trigonometric sums in the theory of numbers" , Interscience  (1954)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Vinogradov,  "Selected works" , Springer  (1985)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  I.M. Vinogradov,  "Estimates of a sum, distribution of primes in an arithmetic series"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''30'''  (1966)  pp. 481–496  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[4a]</TD> <TD valign="top">  A.A. Karatsuba,  "Estimates for trigonometric sums by Vinogradov's method, and applications"  ''Proc. Steklov Inst. Math.'' , '''112'''  (1971)  pp. 251–265  ''Trudy Mat. Inst. Steklov.'' , '''112'''  (1971)  pp. 241–255</TD></TR>
 +
<TR><TD valign="top">[4b]</TD> <TD valign="top">  A.A. Karatsuba,  "On some problems of prime number theory connected with I.M. Vinogradov's method"  ''Proc. Steklov Inst. Math.'' , '''132'''  (1973)  pp. 293–298  ''Trudy Mat. Inst. Steklov.'' , '''132'''  (1973)  pp. 257–261</TD></TR>
 +
<TR><TD valign="top">[5]</TD> <TD valign="top">  L.-K. Hua,  "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' :  2  (1959)  (Heft 13, Teil 1)</TD></TR>
 +
<TR><TD valign="top">[6]</TD> <TD valign="top">  K. Chandrasekharan,  "Arithmetical functions" , Springer  (1970)</TD></TR>
 +
</table>
  
====Comments====
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  R.C. Vaughan,  "The Hardy–Littlewood method" , Cambridge Univ. Press  (1981)</TD></TR>
 +
</table>
  
 
+
[[Category:Number theory]]
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.C. Vaughan,  "The Hardy–Littlewood method" , Cambridge Univ. Press  (1981)</TD></TR></table>
 

Latest revision as of 09:42, 9 November 2014

A new method for estimating trigonometric sums (see Trigonometric sums, method of). By Vinogradov's method one may obtain very accurate estimates of a wide class of trigonometric sums, in which the summation variable runs through a sequence of integers, prime numbers, etc. In this way many classical problems in analytic number theory can be solved (the distribution of the fractional parts of a wide class of functions, the distribution of prime numbers in series of natural numbers, additive problems such as the Waring and Goldbach problems, etc.).

One distinguishes two parts in Vinogradov's method: The method of estimating Weyl sums (cf. Weyl sum) and the method of estimating trigonometric sums with prime numbers. Both these parts utilize Vinogradov's basic idea — to wit, the idea of smoothing double trigonometric sums, which may be described as follows. Given the sum\[ W=\sum_u\sum_v\psi_1(u)\psi_2(v) e^{2\pi i\alpha uv},\]where the summation variables $u$ and $v$ run through the values of (not necessarily successive) integers in respective sets $U$ and $V$, $A<u<2A$. Let $\psi_1(u)$ and $\psi_2(v)$ be arbitrary complex-valued functions. Then

\[ \lvert W\rvert^2\leq B\sum_{A< u\leq 2A}\left\lvert \sum_v\psi_2(v)e^{2\pi i\alpha uv}\right\rvert^2,\]

where $u$ runs through the successive integers in the interval $(A,2A]$ (smoothing), and

\[ B=\sum_n\lvert \psi_1(u)\rvert^2.\]

Vinogradov's method for estimating Weyl sums.

The sums to be estimated are

\[ S=\sum_{1\leq x\leq P}e^{2\pi if(x)},\]

where $f(x)=\alpha_{n+1}x^{n+1}+\cdots+\alpha_1x$; here $\alpha_{n+1},\ldots,\alpha_1$ are real numbers. For $Y=[P^{1-n^2/4}]$ one finds

\begin{align*} S&=Y^{-1}\sum_{1\leq x\leq P}\sum_{1\leq y\leq Y}e^{2\pi if(x+y)}+2\theta Y\\ &=Y^{-1}\sum_{1\leq x\leq P}\sum_{1\leq y\leq Y}e^{2\pi i\mathfrak{A}}+2\theta Y=Y^{-1}W+2\theta Y, \end{align*}

where $\mathfrak{A}=\alpha_{n+1}x^{n+1}+A_n(y)x^n+\cdots+A_1(y)x+A_0(y)$, the letter $W$ denotes the double sum over $x$ and $y$, and $\lvert \theta\rvert\leq 1$. Moreover, letting $\mathfrak{B}$ denote the expression

\[ \alpha_{n+1}x^{n+1}+(A_n(y)+B_n)x^n+\cdots+(A_1(y)+B_1)x\]

one has

\[\lvert W\rvert\leq \sum_{1\leq y\leq Y}\left\lvert \sum_{1\leq x\leq P}e^{2\pi i\mathfrak{B}}\right\rvert+Y_nP^{1-n^2/4},\]

for arbitrary $B_n,\ldots,B_1$ from the domain

\[\lvert B_n\rvert\leq L_n=P^{-n-n^2/4},\ldots,\lvert B_1\rvert\leq L_1=P^{-1-n^2/4}.\]

For any integer $k\geq 1$:

\begin{align*} \lvert W\rvert^{2k} &\leq 2^kY^{2k-1}\sum_{1\leq y\leq Y}\int_{\lvert B_n\rvert\leq L_n}\cdots \int_{\lvert B_1\rvert\leq L_1}\left\lvert \sum_{1\leq x\leq P} e^{2\pi i\mathfrak{B}}\right\rvert\mathrm{d}B_n\cdots\mathrm{d}B_1+2^k(Y_nP^{1-n^2/4})^{2k}\\ &\leq 2^kY^{2k-1}G(Y)\int_0^1\cdots \int_0^1\left\lvert \sum_{1\leq x\leq P}e^{2\pi i\mathfrak{C}}\right\rvert^{2k}\mathrm{d}\gamma_n\cdots\mathrm{d}\gamma_1+2^k(Y_nP^{1-n^2/4})^{2k}, \end{align*}


where $\mathfrak{C}=\alpha_{n+1}x^{n+1}+\gamma_nx^n+\cdots+\gamma_1x$ and $G(Y)$ is the maximum number of cases of coincidence of points with coordinates


\[ \{A_n(y)+B_n\},\{A_{n-1}(y)+B_{n-1}\},\ldots,\{A_1(y)+B_1\}.\]


Here the braces denote the fractional part of the enclosed number, while $y$ varies between 1 and $Y$, and


\[\lvert B_n\rvert\leq L_n,\ldots,\lvert B_1\rvert\leq L_1.\]


If the coefficients $\alpha_{n+1},\ldots,\alpha_2$ of the polynomial $f(x)$ have certain arithmetical properties, it is possible to obtain the estimate $G(Y)\leq Y^{0.9}$. In addition, the last integral does not exceed the number of solutions of the system of equations:


\begin{align*} x_1^n+\cdots+x_k^n &= y_1^n+\cdots+y_k^n,\\ x_1^{n-1}+\cdots+x_k^{n-1} &= y_1^{n-1}+\cdots+y_k^{n-1},\\ \vdots\\ x_1+\cdots+x_k &= y_1+\cdots+y_k, \end{align*} \[ 1\leq x_1,\ldots,y_k\leq P.\]


The number of solutions of this system is estimated using the Vinogradov theorem about the average, which is fundamental in Vinogradov's method for estimating Weyl sums (cf. Vinogradov estimates).


Vinogradov's method for estimating trigonometric sums with prime numbers.

The sums to be estimated are


\[ S' = \sum_{p\leq P}e^{2\pi i f(p) },\]


where $f(p)=\alpha_np^n+\cdots+\alpha_1p$, and $\alpha_n,\ldots,\alpha_1$ are real numbers. Let $D=\prod_{p\leq H}p$, where $H\leq P^{0.25}$. Using the well-known property of the Möbius function, $S'$ is reduced to a small number of sums (this number is not larger than $\ln P/\ln H$) of the form


\[W_S=\sum_{d_1\mid D}\cdots \sum_{d_s\mid D}\sum_{m_1>0}\cdots\sum_{m_s>0}\mu(d_1)\cdots\mu(d_s)e^{2\pi i f(m_1\cdots m_sd_1\cdots d_s)},\]


where $m_1\cdots m_sd_1\cdots d_s\leq P$. In the multiple sum $W_S$ the variables $m_1,\ldots,m_s$ run through the entire summation intervals. The sums $W_S$ in which the summation interval over at least one variable $m$ is long are estimated by Vinogradov's method for estimating Weyl sums. Otherwise the summation interval over one of the summation variables $d$, $d\mid D$, will be long. In such a case one uses the following lemma of Vinogradov which, together with the idea of smoothing double sums, is fundamental to Vinogradov's method for estimating trigonometric sums with prime numbers.


Lemma. Let $0\leq \sigma\leq 1/3$ and let $D$ be the product of all primes not larger than $x^{\sigma}$; all divisors $d$ of $D$ not larger than $x$ may then be distributed over fewer than $x^{\epsilon}$ sets with the following properties:


1) the numbers $d$ belonging to one of these sets have the same number $\beta$ of prime factors and therefore the same value of $\mu(d)=(-1)^\beta$;


2) one of these sets — the so-called simplest set — consists of the single number $d=1$. For each of the remaining sets there is a number $\phi$ such that all numbers of this set satisfy the relation

\[\phi< d\leq \phi^{1+\epsilon_1},\hspace{1cm} \epsilon_1=\epsilon_1(\epsilon);\]

3) for each set of numbers $d$ other than the simplest set there exist, for any $U$, $0\leq U\leq \phi$, two sets of numbers $d'$ and $d''$, with corresponding numbers $\phi'$ and $\phi''$ satisfying the relations

\[U<\phi'\leq Ux^{\sigma},\hspace{1cm}\phi'\phi''=\phi,\]

and such that, for a certain natural number $B$, one obtains each number in the chosen set $B$ times if, out of all the products $d'd''$ one selects only those which satisfy the relation $(d',d'')=1$.

The application of point 3) of this lemma, with a suitable value of $U$, yields

\[ W_S=\sum_u\sum_v\psi_1(u)\psi_2(v)e^{2\pi i f(uv) },\]

where the variables $u$ and $v$ run through long summation intervals. It is possible to deduce Vinogradov's estimate for trigonometric sums with prime numbers from this lemma (cf. Vinogradov estimates).

If $F(x)$ can be properly approximated, in a certain sense, by a polynomial, Vinogradov's method can be used to estimate sums of the type

\[S=\sum_{1\leq x\leq P}e^{2\pi i F(x)},\hspace{1cm} S'=\sum_{p\leq P}e^{2\pi i F(p)}\]

(see [2], ). Sums of the type

\[ \sum_{p\leq P}\chi(p+a),\hspace{1cm} \sum_{1\leq n\leq N}\mu(n)\chi(n+a)\]

and other types can also be estimated by the method. It is possible in this way to solve problems on the distribution of power residues, primitive roots, etc., in sequences of the type $p+a$, where $a>0$ is a given integer, while $p$ runs through the successive prime numbers [3], [5]. For the application of Vinogradov's method in analytic number theory see [1], [2], , [5], [6].

References

[1] I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian)
[2] I.M. Vinogradov, "Selected works" , Springer (1985) (Translated from Russian)
[3] I.M. Vinogradov, "Estimates of a sum, distribution of primes in an arithmetic series" Izv. Akad. Nauk SSSR Ser. Mat. , 30 (1966) pp. 481–496 (In Russian)
[4a] A.A. Karatsuba, "Estimates for trigonometric sums by Vinogradov's method, and applications" Proc. Steklov Inst. Math. , 112 (1971) pp. 251–265 Trudy Mat. Inst. Steklov. , 112 (1971) pp. 241–255
[4b] A.A. Karatsuba, "On some problems of prime number theory connected with I.M. Vinogradov's method" Proc. Steklov Inst. Math. , 132 (1973) pp. 293–298 Trudy Mat. Inst. Steklov. , 132 (1973) pp. 257–261
[5] L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1)
[6] K. Chandrasekharan, "Arithmetical functions" , Springer (1970)
[a1] R.C. Vaughan, "The Hardy–Littlewood method" , Cambridge Univ. Press (1981)
How to Cite This Entry:
Vinogradov method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vinogradov_method&oldid=29855
This article was adapted from an original article by A.A. Karatsuba (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article