|
|
(10 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
| {{MSC|28A25}} | | {{MSC|28A25}} |
− | | + | {{TEX|done}} |
| [[Category:Classical measure theory]] | | [[Category:Classical measure theory]] |
| + | The most important generalization of the concept of an |
| + | [[Integral|integral]]. Let $(X,\mu)$ be a space with a non-negative complete countably-additive measure $\mu$ (cf. |
| + | [[Countably-additive set function|Countably-additive set function]]; |
| + | [[Measure space|Measure space]]), where $\mu(X)<\infty$. A simple function is a |
| + | [[Measurable function|measurable function]] $g:X\to\mathbb R$ that takes at most a countable set of values: $g(x)=y_n$, $y_n\ne y_k$ for $n\ne k$, if $x\in X_n$, $\bigcup\limits_{n=1}^{\infty}X_n=X$. A simple function $g$ is said to be summable if the series{{Anchor|series}} |
| + | \begin{equation} |
| + | \sum\limits_{n=1}^{\infty}y_n\mu(X_n) |
| + | \end{equation} |
| + | converges absolutely (cf. |
| + | [[Absolutely convergent series|Absolutely convergent series]]); the sum of this series is the Lebesgue integral |
| + | \begin{equation} |
| + | \int\limits_X g\ d\mu. |
| + | \end{equation} |
| + | A function $f:X\to\mathbb R$ is summable on $X$ (the notation is $f\in L_1(X,\mu)$) if there is a sequence of simple summable functions $g_n$ uniformly convergent (cf. |
| + | [[Uniform convergence|Uniform convergence]]) to $f$ on a set of full measure, and if the limit |
| + | \begin{equation} |
| + | \lim\limits_{n\to\infty}\int\limits_X g_n\ d\mu = I |
| + | \end{equation} |
| + | is finite. The number $I$ is the Lebesgue integral |
| + | \begin{equation} |
| + | \int\limits_X f\ d\mu. |
| + | \end{equation} |
| | | |
− | [[Category:Tex wanted]]
| + | This is well-defined: the limit $l$ exists and does not depend on the choice of the sequence $g_n$. If $f\in L_1(X,\mu)$, then $f$ is a measurable almost-everywhere finite function on $X$. The Lebesgue integral is a linear non-negative functional on $L_1(X,\mu)$ with the following properties: |
− | | |
− | The most important generalization of the concept of an [[Integral|integral]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l0578601.png" /> be a space with a non-negative complete countably-additive measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l0578602.png" /> (cf. [[Countably-additive set function|Countably-additive set function]]; [[Measure space|Measure space]]), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l0578603.png" />. A simple function is a [[Measurable function|measurable function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l0578604.png" /> that takes at most a countable set of values: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l0578605.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l0578606.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l0578607.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l0578608.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l0578609.png" />. A simple function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786010.png" /> is said to be summable if the series{{Anchor|series}}
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786011.png" /></td> </tr></table>
| |
− | | |
− | converges absolutely (cf. [[Absolutely convergent series|Absolutely convergent series]]); the sum of this series is the Lebesgue integral
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786012.png" /></td> </tr></table>
| |
− | | |
− | A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786013.png" /> is summable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786015.png" />, if there is a sequence of simple summable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786016.png" /> uniformly convergent (cf. [[Uniform convergence|Uniform convergence]]) to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786017.png" /> on a set of full measure, and if the limit
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786018.png" /></td> </tr></table>
| |
− | | |
− | is finite. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786019.png" /> is the Lebesgue integral
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786020.png" /></td> </tr></table>
| |
− | | |
− | This is well-defined: the limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786021.png" /> exists and does not depend on the choice of the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786022.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786024.png" /> is a measurable almost-everywhere finite function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786025.png" />. The Lebesgue integral is a linear non-negative functional on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786026.png" /> with the following properties: | |
− | | |
− | 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786027.png" /> and if
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786028.png" /></td> </tr></table>
| |
− | | |
− | then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786029.png" /> and
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786030.png" /></td> </tr></table>
| |
− | | |
− | 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786031.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786032.png" /> and
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786033.png" /></td> </tr></table>
| |
| | | |
− | 3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786036.png" /> is measurable, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786037.png" /> and
| + | 1) if $L_1(X,\mu)$ and if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786038.png" /></td> </tr></table>
| + | \begin{equation}\mu\{x\in X:\ f(x)\neq h(x)\}=0,\end{equation} |
| | | |
− | 4) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786040.png" /> is measurable, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786041.png" /> and
| + | then $h\in L_1(X,\mu)$ and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786042.png" /></td> </tr></table>
| + | \begin{equation}\int\limits_X f\ d\mu=\int\limits_X g\ d\mu\end{equation} |
| | | |
− | In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786045.png" />, the Lebesgue integral is defined as
| + | 2) if $f\in L_1(X,\mu)$, then $|f|\in L_1(X,\mu)$ and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786046.png" /></td> </tr></table>
| + | \begin{equation}\left|\int\limits_X f\ d\mu\right|\leq\int\limits_X |f|\ d\mu\end{equation} |
| | | |
− | under the condition that this limit exists and is finite for any sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786047.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786050.png" />. In this case the properties 1), 2), 3) are preserved, but condition 4) is violated.
| + | 3) if $f\in L_1(X,\mu),|h|\leq f$ and $h$ is measurable, then $h\in L_1(X,\mu)$ and |
| | | |
− | For the transition to the limit under the Lebesgue integral sign see [[Lebesgue theorem|Lebesgue theorem]].
| + | \begin{equation}\left|\int\limits_X h\ d\mu\right|\leq\int\limits_X f\ d\mu\end{equation} |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786051.png" /> is a [[Measurable set|measurable set]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786052.png" />, then the Lebesgue integral
| + | 4) if $m\leq f\leq M$ and $f$ is measurable, then $f\in L_1(X,\mu)$ and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786053.png" /></td> </tr></table>
| + | \begin{equation}m\mu X\leq\int\limits_X f\ d\mu\leq M\mu X\end{equation} |
| | | |
− | is defined either as above, by replacing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786054.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786055.png" />, or as
| + | In the case when $\mu X=+\infty$ and $X=\cup_{n=1}^\infty X_n,\mu X_n<+\infty$ the Lebesgue integral is defined as |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786056.png" /></td> </tr></table>
| + | \begin{equation}\lim\limits_{n\to\infty}\int\limits_{E_n} f\ du\end{equation} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786057.png" /> is the characteristic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786058.png" />; these definitions are equivalent. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786059.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786060.png" /> for any measurable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786061.png" />. If
| + | under the condition that this limit exists and is finite for any sequence $E_n$ such that $\mu E_n<+\infty,E_n\subset E_{n+1},\cup_{n=1}^\infty E_n=X$. In this case the properties 1), 2), 3) are preserved, but condition 4) is violated. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786062.png" /></td> </tr></table>
| + | For the transition to the limit under the Lebesgue integral sign see |
| + | [[Lebesgue theorem|Lebesgue theorem]]. |
| | | |
− | if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786063.png" /> is measurable for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786064.png" />, if
| + | If $A$ is a |
| + | [[Measurable set|measurable set]] in $X$, then the Lebesgue integral |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786065.png" /></td> </tr></table>
| + | \begin{equation}\int\limits_A f\ d\mu\end{equation} |
| | | |
− | and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786066.png" />, then
| + | is defined either as above, by replacing $X$ by $A$, or as |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786067.png" /></td> </tr></table>
| + | \begin{equation}\int\limits_X f\chi_A\ d\mu\end{equation} |
| | | |
− | Conversely, if under these conditions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786068.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786069.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786070.png" /> and if
| + | where $\chi_A$ is the characteristic function of $A$; these definitions are equivalent. If $f\in L_1(A,\mu)$, then $f\in L_1(A_1,\mu)$ for any measurable $A_1\subset A$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786071.png" /></td> </tr></table>
| + | If |
| | | |
− | then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786072.png" /> and the previous equality is true (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786073.png" />-additivity of the Lebesgue integral).
| + | \begin{equation}A=\bigcup_{n=1}^\infty A_n\end{equation} |
| | | |
− | The function of sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786074.png" /> given by
| + | if $A$ is measurable for every $n$, if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786075.png" /></td> </tr></table>
| + | \begin{equation}A_n\cap A_k\ \text{for}\ n\neq k\end{equation} |
| | | |
− | is absolutely continuous with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786076.png" /> (cf. [[Absolute continuity|Absolute continuity]]); if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786077.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786078.png" /> is a non-negative measure that is absolutely continuous with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786079.png" />. The converse assertion is the [[Radon–Nikodým theorem|Radon–Nikodým theorem]].
| + | and if $f\in L_1(A,\mu)$ then |
| | | |
− | For functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786080.png" /> the name "Lebesgue integral" is applied to the corresponding functional if the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786081.png" /> is the [[Lebesgue measure|Lebesgue measure]]; here, the set of summable functions is denoted simply by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786082.png" />, and the integral by
| + | \begin{equation}\int\limits_A f\ d\mu=\sum_{n=1}^\infty \int\limits_{A_n} f\ d\mu\end{equation} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786083.png" /></td> </tr></table>
| + | Conversely, if under these conditions on $A_n$ one has $f\in L_1(A,\mu)$ for every $n$ and if $\sum_{n=1}^\infty\int\limits_{A_n} |f|\ d\mu < \infty$, then $f\in L_1(A,\mu)$ and the previous equality is true ($\sigma$-additivity of the Lebesgue integral). |
| | | |
− | For other measures this functional is called a [[Lebesgue–Stieltjes integral|Lebesgue–Stieltjes integral]].
| + | The function of sets $A\subset X$ given by $F(A)=\int\limits_A f\ d\mu$ is absolutely continuous with respect to $\mu$ (cf. |
| + | [[Absolute continuity|Absolute continuity]]); if $f\geq 0$, then $F$ is a non-negative measure that is absolutely continuous with respect to $\mu$. The converse assertion is the |
| + | [[Radon–Nikodým theorem|Radon–Nikodým theorem]]. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786084.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786085.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786086.png" /> is a non-decreasing absolutely continuous function, then
| + | For functions $f : \RR^n \to \RR^1$ the name "Lebesgue integral" is applied to the corresponding functional if the measure $\mu$ is the |
| + | [[Lebesgue measure|Lebesgue measure]]; here, the set of summable functions is denoted simply by $L_1(\RR^n)$, and the integral by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786087.png" /></td> </tr></table>
| + | $$\int_{\RR^n} f(x) dx.$$ |
| + | For other measures this functional is called a |
| + | [[Lebesgue–Stieltjes integral|Lebesgue–Stieltjes integral]]. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786089.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786090.png" /> is monotone on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786091.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786092.png" /> and there is a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786093.png" /> such that | + | If $f : [a, b] \to \RR^1$, $f \in L_1[a, b]$ and if $x : [\alpha, \beta] \to [a, b]$ is a non-decreasing absolutely continuous function, then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786094.png" /></td> </tr></table>
| + | $$\int_a^b f(x) dx = \int_\alpha^\beta f(x(t)) x'(t) dt.$$ |
| + | If $f: [a, b] \to \RR^1$, $f \in L_1[a, b]$ and if $g:[a, b] \to \RR^1$ is monotone on $[a, b]$, then $fg \in L_1[a, b]$ and there is a point $\xi \in [a, b]$ such that |
| | | |
| + | $$\int_a^b f(x) g(x) dx = g(a) \int_a^\xi f(x) dx + g(b) \int_\xi^b f(x) dx$$ |
| (the second mean-value theorem). | | (the second mean-value theorem). |
| | | |
− | In 1902 H. Lebesgue gave (see {{Cite|Le}}) a definition of the integral for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786095.png" /> and measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786096.png" /> equal to the Lebesgue measure. He constructed simple functions that uniformly approximate almost-everywhere on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786097.png" /> of finite measure a measurable non-negative function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786098.png" />, and proved the existence of a common limit (finite or infinite) of the integrals of these simple functions as they tend to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l05786099.png" />. The Lebesgue integral is a basis for various generalizations of the concept of an integral. As N.N. Luzin remarked {{Cite|Lu}}, property 2), called absolute integrability, distinguishes the Lebesgue integral for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l057860100.png" /> from all possible generalized integrals. | + | In 1902 H. Lebesgue gave (see {{Cite|Le}}) a definition of the integral for $X \subset \RR$ and measure $\mu$ equal to the Lebesgue measure. He constructed simple functions that uniformly approximate almost-everywhere on a set $f : E \to \RR^1$ of finite measure a measurable non-negative function $f$, and proved the existence of a common limit (finite or infinite) of the integrals of these simple functions as they tend to $f$. The Lebesgue integral is a basis for various generalizations of the concept of an integral. As N.N. Luzin remarked {{Cite|Lu}}, property 2), called absolute integrability, distinguishes the Lebesgue integral for $f: \RR^1 \to \RR^1$ from all possible generalized integrals. |
| | | |
| ====References==== | | ====References==== |
Line 111: |
Line 112: |
| | | |
| ====Comments==== | | ====Comments==== |
− | For other generalizations of the notion of an integral see [[A-integral|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057860/l057860101.png" />-integral]]; [[Bochner integral|Bochner integral]]; [[Boks integral|Boks integral]]; [[Burkill integral|Burkill integral]]; [[Daniell integral|Daniell integral]]; [[Darboux sum|Darboux sum]]; [[Denjoy integral|Denjoy integral]]; [[Kolmogorov integral|Kolmogorov integral]]; [[Perron integral|Perron integral]]; [[Perron–Stieltjes integral|Perron–Stieltjes integral]]; [[Pettis integral|Pettis integral]]; [[Radon integral|Radon integral]]; [[Stieltjes integral|Stieltjes integral]]; [[Strong integral|Strong integral]]; [[Wiener integral|Wiener integral]]. See also, of course, [[Riemann integral|Riemann integral]]. See also [[Double integral|Double integral]]; [[Improper integral|Improper integral]]; [[Fubini theorem|Fubini theorem]] (on changing the order of integration). | + | For other generalizations of the notion of an integral see |
| + | [[A-integral|$A$-integral]]; |
| + | [[Bochner integral|Bochner integral]]; |
| + | [[Boks integral|Boks integral]]; |
| + | [[Burkill integral|Burkill integral]]; |
| + | [[Daniell integral|Daniell integral]]; |
| + | [[Darboux sum|Darboux sum]]; |
| + | [[Denjoy integral|Denjoy integral]]; |
| + | [[Kolmogorov integral|Kolmogorov integral]]; |
| + | [[Perron integral|Perron integral]]; |
| + | [[Perron–Stieltjes integral|Perron–Stieltjes integral]]; |
| + | [[Pettis integral|Pettis integral]]; |
| + | [[Radon integral|Radon integral]]; |
| + | [[Stieltjes integral|Stieltjes integral]]; |
| + | [[Strong integral|Strong integral]]; |
| + | [[Wiener integral|Wiener integral]]. See also, of course, |
| + | [[Riemann integral|Riemann integral]]. See also |
| + | [[Double integral|Double integral]]; |
| + | [[Improper integral|Improper integral]]; |
| + | [[Fubini theorem|Fubini theorem]] (on changing the order of integration). |
| | | |
| ====References==== | | ====References==== |
Line 121: |
Line 141: |
| |valign="top"|{{Ref|S}}|| S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} | | |valign="top"|{{Ref|S}}|| S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} |
| |- | | |- |
− | |valign="top"|{{Ref|Ro}}|| H.L. Royden, [[Royden, "Real analysis"|"Real analysis"]], Macmillan (1968) | + | |valign="top"|{{Ref|Ro}}|| H.L. Royden, |
| + | [[Royden, "Real analysis"|"Real analysis"]], Macmillan (1968) |
| |- | | |- |
| |valign="top"|{{Ref|Ru}}|| W. Rudin, "Real and complex analysis" , McGraw-Hill (1978) pp. 24 {{MR|1736644}} {{MR|1645547}} {{MR|0924157}} {{MR|0850722}} {{MR|0662565}} {{MR|0344043}} {{MR|0210528}} {{ZBL|1038.00002}} {{ZBL|0954.26001}} {{ZBL|0925.00005}} {{ZBL|0613.26001}} {{ZBL|0925.00003}} {{ZBL|0278.26001}} {{ZBL|0142.01701}} | | |valign="top"|{{Ref|Ru}}|| W. Rudin, "Real and complex analysis" , McGraw-Hill (1978) pp. 24 {{MR|1736644}} {{MR|1645547}} {{MR|0924157}} {{MR|0850722}} {{MR|0662565}} {{MR|0344043}} {{MR|0210528}} {{ZBL|1038.00002}} {{ZBL|0954.26001}} {{ZBL|0925.00005}} {{ZBL|0613.26001}} {{ZBL|0925.00003}} {{ZBL|0278.26001}} {{ZBL|0142.01701}} |
2020 Mathematics Subject Classification: Primary: 28A25 [MSN][ZBL]
The most important generalization of the concept of an
integral. Let $(X,\mu)$ be a space with a non-negative complete countably-additive measure $\mu$ (cf.
Countably-additive set function;
Measure space), where $\mu(X)<\infty$. A simple function is a
measurable function $g:X\to\mathbb R$ that takes at most a countable set of values: $g(x)=y_n$, $y_n\ne y_k$ for $n\ne k$, if $x\in X_n$, $\bigcup\limits_{n=1}^{\infty}X_n=X$. A simple function $g$ is said to be summable if the series
\begin{equation}
\sum\limits_{n=1}^{\infty}y_n\mu(X_n)
\end{equation}
converges absolutely (cf.
Absolutely convergent series); the sum of this series is the Lebesgue integral
\begin{equation}
\int\limits_X g\ d\mu.
\end{equation}
A function $f:X\to\mathbb R$ is summable on $X$ (the notation is $f\in L_1(X,\mu)$) if there is a sequence of simple summable functions $g_n$ uniformly convergent (cf.
Uniform convergence) to $f$ on a set of full measure, and if the limit
\begin{equation}
\lim\limits_{n\to\infty}\int\limits_X g_n\ d\mu = I
\end{equation}
is finite. The number $I$ is the Lebesgue integral
\begin{equation}
\int\limits_X f\ d\mu.
\end{equation}
This is well-defined: the limit $l$ exists and does not depend on the choice of the sequence $g_n$. If $f\in L_1(X,\mu)$, then $f$ is a measurable almost-everywhere finite function on $X$. The Lebesgue integral is a linear non-negative functional on $L_1(X,\mu)$ with the following properties:
1) if $L_1(X,\mu)$ and if
\begin{equation}\mu\{x\in X:\ f(x)\neq h(x)\}=0,\end{equation}
then $h\in L_1(X,\mu)$ and
\begin{equation}\int\limits_X f\ d\mu=\int\limits_X g\ d\mu\end{equation}
2) if $f\in L_1(X,\mu)$, then $|f|\in L_1(X,\mu)$ and
\begin{equation}\left|\int\limits_X f\ d\mu\right|\leq\int\limits_X |f|\ d\mu\end{equation}
3) if $f\in L_1(X,\mu),|h|\leq f$ and $h$ is measurable, then $h\in L_1(X,\mu)$ and
\begin{equation}\left|\int\limits_X h\ d\mu\right|\leq\int\limits_X f\ d\mu\end{equation}
4) if $m\leq f\leq M$ and $f$ is measurable, then $f\in L_1(X,\mu)$ and
\begin{equation}m\mu X\leq\int\limits_X f\ d\mu\leq M\mu X\end{equation}
In the case when $\mu X=+\infty$ and $X=\cup_{n=1}^\infty X_n,\mu X_n<+\infty$ the Lebesgue integral is defined as
\begin{equation}\lim\limits_{n\to\infty}\int\limits_{E_n} f\ du\end{equation}
under the condition that this limit exists and is finite for any sequence $E_n$ such that $\mu E_n<+\infty,E_n\subset E_{n+1},\cup_{n=1}^\infty E_n=X$. In this case the properties 1), 2), 3) are preserved, but condition 4) is violated.
For the transition to the limit under the Lebesgue integral sign see
Lebesgue theorem.
If $A$ is a
measurable set in $X$, then the Lebesgue integral
\begin{equation}\int\limits_A f\ d\mu\end{equation}
is defined either as above, by replacing $X$ by $A$, or as
\begin{equation}\int\limits_X f\chi_A\ d\mu\end{equation}
where $\chi_A$ is the characteristic function of $A$; these definitions are equivalent. If $f\in L_1(A,\mu)$, then $f\in L_1(A_1,\mu)$ for any measurable $A_1\subset A$.
If
\begin{equation}A=\bigcup_{n=1}^\infty A_n\end{equation}
if $A$ is measurable for every $n$, if
\begin{equation}A_n\cap A_k\ \text{for}\ n\neq k\end{equation}
and if $f\in L_1(A,\mu)$ then
\begin{equation}\int\limits_A f\ d\mu=\sum_{n=1}^\infty \int\limits_{A_n} f\ d\mu\end{equation}
Conversely, if under these conditions on $A_n$ one has $f\in L_1(A,\mu)$ for every $n$ and if $\sum_{n=1}^\infty\int\limits_{A_n} |f|\ d\mu < \infty$, then $f\in L_1(A,\mu)$ and the previous equality is true ($\sigma$-additivity of the Lebesgue integral).
The function of sets $A\subset X$ given by $F(A)=\int\limits_A f\ d\mu$ is absolutely continuous with respect to $\mu$ (cf.
Absolute continuity); if $f\geq 0$, then $F$ is a non-negative measure that is absolutely continuous with respect to $\mu$. The converse assertion is the
Radon–Nikodým theorem.
For functions $f : \RR^n \to \RR^1$ the name "Lebesgue integral" is applied to the corresponding functional if the measure $\mu$ is the
Lebesgue measure; here, the set of summable functions is denoted simply by $L_1(\RR^n)$, and the integral by
$$\int_{\RR^n} f(x) dx.$$
For other measures this functional is called a
Lebesgue–Stieltjes integral.
If $f : [a, b] \to \RR^1$, $f \in L_1[a, b]$ and if $x : [\alpha, \beta] \to [a, b]$ is a non-decreasing absolutely continuous function, then
$$\int_a^b f(x) dx = \int_\alpha^\beta f(x(t)) x'(t) dt.$$
If $f: [a, b] \to \RR^1$, $f \in L_1[a, b]$ and if $g:[a, b] \to \RR^1$ is monotone on $[a, b]$, then $fg \in L_1[a, b]$ and there is a point $\xi \in [a, b]$ such that
$$\int_a^b f(x) g(x) dx = g(a) \int_a^\xi f(x) dx + g(b) \int_\xi^b f(x) dx$$
(the second mean-value theorem).
In 1902 H. Lebesgue gave (see [Le]) a definition of the integral for $X \subset \RR$ and measure $\mu$ equal to the Lebesgue measure. He constructed simple functions that uniformly approximate almost-everywhere on a set $f : E \to \RR^1$ of finite measure a measurable non-negative function $f$, and proved the existence of a common limit (finite or infinite) of the integrals of these simple functions as they tend to $f$. The Lebesgue integral is a basis for various generalizations of the concept of an integral. As N.N. Luzin remarked [Lu], property 2), called absolute integrability, distinguishes the Lebesgue integral for $f: \RR^1 \to \RR^1$ from all possible generalized integrals.
References
[Le] |
H. Lebesgue, "Leçons sur l'intégration et la récherche des fonctions primitives" , Gauthier-Villars (1928) MR2857993 Zbl 54.0257.01
|
[Lu] |
N.N. Luzin, "The integral and trigonometric series" , Moscow-Leningrad (1915) (In Russian) (Thesis; also: Collected Works, Vol. 1, Moscow, 1953, pp. 48–212)
|
[KF] |
A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian) MR1025126 MR0708717 MR0630899 MR0435771 MR0377444 MR0234241 MR0215962 MR0118796 MR1530727 MR0118795 MR0085462 MR0070045 Zbl 0932.46001 Zbl 0672.46001 Zbl 0501.46001 Zbl 0501.46002 Zbl 0235.46001 Zbl 0103.08801
|
For other generalizations of the notion of an integral see
$A$-integral;
Bochner integral;
Boks integral;
Burkill integral;
Daniell integral;
Darboux sum;
Denjoy integral;
Kolmogorov integral;
Perron integral;
Perron–Stieltjes integral;
Pettis integral;
Radon integral;
Stieltjes integral;
Strong integral;
Wiener integral. See also, of course,
Riemann integral. See also
Double integral;
Improper integral;
Fubini theorem (on changing the order of integration).
References
[H] |
P.R. Halmos, "Measure theory" , v. Nostrand (1950) MR0033869 Zbl 0040.16802
|
[P] |
I.N. Pesin, "Classical and modern integration theories" , Acad. Press (1970) (Translated from Russian) MR0264015 Zbl 0206.06401
|
[S] |
S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) MR0167578 Zbl 1196.28001 Zbl 0017.30004 Zbl 63.0183.05
|
[Ro] |
H.L. Royden,
"Real analysis", Macmillan (1968)
|
[Ru] |
W. Rudin, "Real and complex analysis" , McGraw-Hill (1978) pp. 24 MR1736644 MR1645547 MR0924157 MR0850722 MR0662565 MR0344043 MR0210528 Zbl 1038.00002 Zbl 0954.26001 Zbl 0925.00005 Zbl 0613.26001 Zbl 0925.00003 Zbl 0278.26001 Zbl 0142.01701
|
[HS] |
E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) MR0188387 Zbl 0137.03202
|