Difference between revisions of "Airy equation"
(TeX, Refs, MSC) |
(→References: + ZBL link) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 25: | Line 25: | ||
w(0) | w(0) | ||
\left( | \left( | ||
− | 1 + \frac{z^3}{2 | + | 1 + \frac{z^3}{2 \cdot 3} + \frac{z^6}{(2\cdot 3) \cdot(5 \cdot 6)} + \cdots |
\right) | \right) | ||
+ | + | ||
w'(0) | w'(0) | ||
\left( | \left( | ||
− | z + \frac{z^4}{3 | + | z + \frac{z^4}{3 \cdot 4} + \frac{z^7}{(3 \cdot 4) \cdot(6 \cdot7)} + \cdots |
\right), | \right), | ||
\] | \] | ||
Line 41: | Line 41: | ||
====References==== | ====References==== | ||
− | + | - {{Ref|AbSt}} M. Abramowitz (ed.) I.A. Stegun (ed.), ''Handbook of mathematical functions'', ''Appl. Math. Series'', '''55''', Nat. Bureau of Standards,, U.S. Department Commerce (1964) | |
− | + | ||
− | + | - {{Ref|Ai}} G.B. Airy, "On the intensity of light in the neighbourhood of a caustic" ''Trans. Cambridge Philos. Soc.'', '''6''' (1838) pp. 379–402 | |
− | + | ||
− | + | - {{Ref|BaBu}} V.M. Babich, V.S. Buldyrev, "Asymptotic methods in the diffraction of short waves", Moscow (1972) {{ZBL|0255.35002}} (In Russian) (Translation: "Short-Wavelength Diffraction Theory. Asymptotic Methods", Springer, 1991 {{ZBL|0742.35002}}) | |
− | |||
− | |||
− | |||
− | |} |
Latest revision as of 12:51, 23 February 2024
2020 Mathematics Subject Classification: Primary: 33C10 [MSN][ZBL]
The Airy equation is the second-order linear ordinary differential equation \[ y'' - xy = 0. \] It occurred first in G.B. Airy's research in optics [Ai]. Its general solution can be expressed in terms of Bessel functions of order $\pm 1/3$: \[ y(x) = c_1 \sqrt{x} J_{1/3}\left(\frac{2}{3}\mathrm{i}x^{3/2}\right) + c_2 \sqrt{x} J_{-1/3}\left(\frac{2}{3}\mathrm{i}x^{3/2}\right). \] Since the Airy equation plays an important role in various problems of physics, mechanics and asymptotic analysis, its solutions are regarded as forming a distinct class of special functions (see Airy functions).
The solutions of the Airy equation in the complex plane $z$, \[ w'' - zw = 0, \] have the following fundamental properties:
1) Every solution is an entire function of $z$ and can be expanded in a power series \[ w(z) = w(0) \left( 1 + \frac{z^3}{2 \cdot 3} + \frac{z^6}{(2\cdot 3) \cdot(5 \cdot 6)} + \cdots \right) + w'(0) \left( z + \frac{z^4}{3 \cdot 4} + \frac{z^7}{(3 \cdot 4) \cdot(6 \cdot7)} + \cdots \right), \] which converges for all $z$.
2) If $w(z) \not\equiv 0$ is a solution of the Airy equation, then so are $w(\omega z)$ and $w(\omega^2 z)$, where $w=\mathrm{e}^{2\pi\mathrm{i}/3}$, and any two of these solutions are linearly independent. The following identity holds: \[ w(z) + w(\omega z) + w(\omega^2 z) \equiv 0. \]
References
- [AbSt] M. Abramowitz (ed.) I.A. Stegun (ed.), Handbook of mathematical functions, Appl. Math. Series, 55, Nat. Bureau of Standards,, U.S. Department Commerce (1964)
- [Ai] G.B. Airy, "On the intensity of light in the neighbourhood of a caustic" Trans. Cambridge Philos. Soc., 6 (1838) pp. 379–402
- [BaBu] V.M. Babich, V.S. Buldyrev, "Asymptotic methods in the diffraction of short waves", Moscow (1972) Zbl 0255.35002 (In Russian) (Translation: "Short-Wavelength Diffraction Theory. Asymptotic Methods", Springer, 1991 Zbl 0742.35002)
Airy equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Airy_equation&oldid=27208