Difference between revisions of "Transition-operator semi-group"
|  (refs format) | Ulf Rehmann (talk | contribs)  m (tex encoded by computer) | ||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | t0937701.png | ||
| + | $#A+1 = 67 n = 0 | ||
| + | $#C+1 = 67 : ~/encyclopedia/old_files/data/T093/T.0903770 Transition\AAhoperator semi\AAhgroup | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
| {{MSC|60J35|47D07}} | {{MSC|60J35|47D07}} | ||
| [[Category:Markov processes]] | [[Category:Markov processes]] | ||
| − | The [[Semi-group of operators|semi-group of operators]] generated by the [[Transition function|transition function]] of a [[Markov process|Markov process]]. From the transition function  | + | The [[Semi-group of operators|semi-group of operators]] generated by the [[Transition function|transition function]] of a [[Markov process|Markov process]]. From the transition function  $  P( t, x, A) $ | 
| + | of a homogeneous Markov process  $  X = ( x _ {t} , \zeta , {\mathcal F} _ {t} , {\mathsf P} _ {x} ) $ | ||
| + | in a state space  $  ( E, {\mathcal B}) $ | ||
| + | one can construct certain semi-groups of linear operators  $  P  ^ {t} $ | ||
| + | acting in some Banach space  $  B ${{ | ||
| + | Cite|F}}. Very often,  $  B $ | ||
| + | is the space  $  B ( E) $ | ||
| + | of bounded real-valued measurable functions  $  f $ | ||
| + | in  $  E $ | ||
| + | with the uniform norm (or for a [[Feller process|Feller process]]  $  X $,   | ||
| + | the space  $  C ( E) $ | ||
| + | of continuous functions with the same norm) or else the space  $  V( E) $ | ||
| + | of finite countably-additive functions  $  \phi $ | ||
| + | on  $  {\mathcal B} $ | ||
| + | with the complete variation as norm. In the first two cases one puts | ||
| − | + | $$  | |
| + | P  ^ {t} f( x)  =  \int\limits _ { E } f( y)  {\mathsf P} ( t, x, dy); | ||
| + | $$ | ||
| and in the third | and in the third | ||
| − | + | $$  | |
| + | P  ^ {t} \phi ( A)  =  \int\limits _ { E } {\mathsf P} ( t, y, A) \phi ( dy) | ||
| + | $$ | ||
| − | (here  | + | (here  $  f $ | 
| + | and  $  \phi $ | ||
| + | belong to the corresponding spaces,  $  x \in E $,   | ||
| + | $  A \in {\mathcal B} $).   | ||
| + | In all these cases the semi-group property holds:  $  P  ^ {t} P  ^ {s} = P  ^ {t+} s $,  | ||
| + | $  s, t \geq  0 $,   | ||
| + | and any of the three semi-groups  $  \{ P  ^ {t} \} $ | ||
| + | is called a transition-operator semi-group. | ||
| − | In what follows, only the first case is considered. The usual definition of the infinitesimal generator  | + | In what follows, only the first case is considered. The usual definition of the infinitesimal generator  $  A $ | 
| + | of the semi-group  $  \{ P  ^ {t} \} $( | ||
| + | this is also the infinitesimal generator of the process) is as follows: | ||
| − | + | $$  | |
| + | Af  =  \lim\limits _ {t \downarrow 0 }   | ||
| + | \frac{1}{t} | ||
| + |  ( P  ^ {t} f - f  ) | ||
| + | $$ | ||
| − | for all  | + | for all  $  f \in B ( E) $ | 
| + | for which this limit exists as a limit in  $  B ( E) $.   | ||
| + | It is assumed that  $  P( t, x, A) $ | ||
| + | for  $  A \in {\mathcal B} $ | ||
| + | is a measurable function of the pair of variables  $  ( t, x) $,  | ||
| + | and one introduces the resolvent  $  R  ^  \alpha  $ | ||
| + | of the process  $  X $,  | ||
| + | $  \alpha > 0 $,   | ||
| + | by: | ||
| − | + | $$ \tag{* } | |
| + | R  ^  \alpha  f  =  \int\limits _ { 0 } ^  \infty   e ^ {- \alpha t } P  ^ {t} f  dt ,\ \  | ||
| + | f \in B ( E). | ||
| + | $$ | ||
| − | If  | + | If  $  \| P  ^ {t} f- f \| \rightarrow 0 $ | 
| + | as  $  t \downarrow 0 $,   | ||
| + | then  $  Ag = \alpha g - f $,   | ||
| + | where  $  g = R  ^  \alpha  f $.   | ||
| + | Under certain assumptions the integral (*) exists also for  $  \alpha = 0 $,   | ||
| + | and  $  g = R  ^ {0} f $ | ||
| + | satisfies the "Poisson equation"   | ||
| − | + | $$  | |
| + | Ag  =  - f | ||
| + | $$ | ||
| − | (for this reason, in particular,  | + | (for this reason, in particular,  $  R  ^ {0} f $ | 
| + | is called the potential of  $  f  $). | ||
| Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators {{Cite|Dy}}, {{Cite|GS}}. Also, using the infinitesimal generator one can find the mean values of various functionals. For example, under certain assumptions the function | Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators {{Cite|Dy}}, {{Cite|GS}}. Also, using the infinitesimal generator one can find the mean values of various functionals. For example, under certain assumptions the function | ||
| − | + | $$  | |
| + | v( t, x)  =  {\mathsf E} _ {x} \left [  \mathop{\rm exp} \left \{ \int\limits _ { 0 } ^ { {t }  \wedge \zeta } c( x _ {s} )  ds \right \} f( x _ {t \wedge \zeta }  ) \right ] ,\ \  | ||
| + | t \geq  0,\  x \in E, | ||
| + | $$ | ||
| − | is a unique solution to  | + | is a unique solution to  $  v _ {t}  ^  \prime  = Av + cv $,  | 
| + | $  v( 0, x) = f( x) $,   | ||
| + | which is a not-too-rapidly-increasing function of  $  t $.   | ||
| + | Here  $  {\mathsf E} _ {x} $ | ||
| + | is the mathematical expectation corresponding to  $  {\mathsf P} _ {x} $,   | ||
| + | while  $  t \wedge \zeta = \min ( t, \zeta ) $. | ||
| − | The operator  | + | The operator  $  A $ | 
| + | is related to the characteristic operator  $  \mathfrak A ${{ | ||
| + | Cite|Dy}}. Let  $  X $ | ||
| + | be a Markov process that is right continuous in a topological space  $  E $.   | ||
| + | For a Borel function  $  f $ | ||
| + | one puts | ||
| − | + | $$  | |
| + | \mathfrak A f( x)  =  \lim\limits _ {U \downarrow x }  \left [  | ||
| + | \frac{ {\mathsf E} _ {x} f( x _  \tau  ) - | ||
| + | f( x) }{ {\mathsf E} _ {x} \tau } | ||
| + |  \right ] , | ||
| + | $$ | ||
| − | if the limit exists for all  | + | if the limit exists for all  $  x \in E $,   | 
| + | where  $  U $ | ||
| + | runs through a system of neighbourhoods of the point  $  x $ | ||
| + | contracting towards  $  x $ | ||
| + | and where  $  \tau $ | ||
| + | is the moment of first exit of  $  X $ | ||
| + | from  $  U $( | ||
| + | if  $  {\mathsf E} _ {x} \tau = \infty $,   | ||
| + | the fraction in the limit is set equal to zero). In many cases the calculation of  $  Af $ | ||
| + | amounts to calculating  $  \mathfrak A f $. | ||
| ====References==== | ====References==== | ||
| Line 49: | Line 139: | ||
| ====Comments==== | ====Comments==== | ||
| − | |||
| ====References==== | ====References==== | ||
Latest revision as of 08:26, 6 June 2020
2020 Mathematics Subject Classification: Primary: 60J35 Secondary: 47D07 [MSN][ZBL]
The semi-group of operators generated by the transition function of a Markov process. From the transition function $ P( t, x, A) $ of a homogeneous Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} , {\mathsf P} _ {x} ) $ in a state space $ ( E, {\mathcal B}) $ one can construct certain semi-groups of linear operators $ P ^ {t} $ acting in some Banach space $ B $[F]. Very often, $ B $ is the space $ B ( E) $ of bounded real-valued measurable functions $ f $ in $ E $ with the uniform norm (or for a Feller process $ X $, the space $ C ( E) $ of continuous functions with the same norm) or else the space $ V( E) $ of finite countably-additive functions $ \phi $ on $ {\mathcal B} $ with the complete variation as norm. In the first two cases one puts
$$ P ^ {t} f( x) = \int\limits _ { E } f( y) {\mathsf P} ( t, x, dy); $$
and in the third
$$ P ^ {t} \phi ( A) = \int\limits _ { E } {\mathsf P} ( t, y, A) \phi ( dy) $$
(here $ f $ and $ \phi $ belong to the corresponding spaces, $ x \in E $, $ A \in {\mathcal B} $). In all these cases the semi-group property holds: $ P ^ {t} P ^ {s} = P ^ {t+} s $, $ s, t \geq 0 $, and any of the three semi-groups $ \{ P ^ {t} \} $ is called a transition-operator semi-group.
In what follows, only the first case is considered. The usual definition of the infinitesimal generator $ A $ of the semi-group $ \{ P ^ {t} \} $( this is also the infinitesimal generator of the process) is as follows:
$$ Af = \lim\limits _ {t \downarrow 0 } \frac{1}{t} ( P ^ {t} f - f ) $$
for all $ f \in B ( E) $ for which this limit exists as a limit in $ B ( E) $. It is assumed that $ P( t, x, A) $ for $ A \in {\mathcal B} $ is a measurable function of the pair of variables $ ( t, x) $, and one introduces the resolvent $ R ^ \alpha $ of the process $ X $, $ \alpha > 0 $, by:
$$ \tag{* } R ^ \alpha f = \int\limits _ { 0 } ^ \infty e ^ {- \alpha t } P ^ {t} f dt ,\ \ f \in B ( E). $$
If $ \| P ^ {t} f- f \| \rightarrow 0 $ as $ t \downarrow 0 $, then $ Ag = \alpha g - f $, where $ g = R ^ \alpha f $. Under certain assumptions the integral (*) exists also for $ \alpha = 0 $, and $ g = R ^ {0} f $ satisfies the "Poisson equation"
$$ Ag = - f $$
(for this reason, in particular, $ R ^ {0} f $ is called the potential of $ f $).
Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators [Dy], [GS]. Also, using the infinitesimal generator one can find the mean values of various functionals. For example, under certain assumptions the function
$$ v( t, x) = {\mathsf E} _ {x} \left [ \mathop{\rm exp} \left \{ \int\limits _ { 0 } ^ { {t } \wedge \zeta } c( x _ {s} ) ds \right \} f( x _ {t \wedge \zeta } ) \right ] ,\ \ t \geq 0,\ x \in E, $$
is a unique solution to $ v _ {t} ^ \prime = Av + cv $, $ v( 0, x) = f( x) $, which is a not-too-rapidly-increasing function of $ t $. Here $ {\mathsf E} _ {x} $ is the mathematical expectation corresponding to $ {\mathsf P} _ {x} $, while $ t \wedge \zeta = \min ( t, \zeta ) $.
The operator $ A $ is related to the characteristic operator $ \mathfrak A $[Dy]. Let $ X $ be a Markov process that is right continuous in a topological space $ E $. For a Borel function $ f $ one puts
$$ \mathfrak A f( x) = \lim\limits _ {U \downarrow x } \left [ \frac{ {\mathsf E} _ {x} f( x _ \tau ) - f( x) }{ {\mathsf E} _ {x} \tau } \right ] , $$
if the limit exists for all $ x \in E $, where $ U $ runs through a system of neighbourhoods of the point $ x $ contracting towards $ x $ and where $ \tau $ is the moment of first exit of $ X $ from $ U $( if $ {\mathsf E} _ {x} \tau = \infty $, the fraction in the limit is set equal to zero). In many cases the calculation of $ Af $ amounts to calculating $ \mathfrak A f $.
References
| [F] | W. Feller, "The parabolic differential equations and the associated semi-groups of transformations" Ann. of Math. , 55 (1952) pp. 468–519 MR0047886 | 
| [Dy] | E.B. Dynkin, "Foundations of the theory of Markov processes" , Springer (1961) (Translated from Russian) MR0131898 | 
| [GS] | I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , 2 , Springer (1975) (Translated from Russian) MR0375463 Zbl 0305.60027 | 
Comments
References
| [BG] | R.M. Blumenthal, R.K. Getoor, "Markov processes and potential theory" , Acad. Press (1968) MR0264757 Zbl 0169.49204 | 
| [Do] | J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390 MR0731258 Zbl 0549.31001 | 
| [Dy2] | E.B. Dynkin, "Markov processes" , 1 , Springer (1965) (Translated from Russian) MR0193671 Zbl 0132.37901 | 
| [F2] | W. Feller, "An introduction to probability theory and its applications" , 1–2 , Wiley (1966) MR0210154 Zbl 0138.10207 | 
| [L] | M. Loève, "Probability theory" , II , Springer (1978) MR0651017 MR0651018 Zbl 0385.60001 | 
| [DM] | C. Dellacherie, P.A. Meyer, "Probabilities and potential" , 1–3 , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) MR0939365 MR0898005 MR0727641 MR0745449 MR0566768 MR0521810 Zbl 0716.60001 Zbl 0494.60002 Zbl 0494.60001 | 
| [S] | M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) MR0958914 Zbl 0649.60079 | 
| [AM] | S. Albeverio, Zh.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" Forum Math. , 3 (1991) pp. 389–400 | 
Transition-operator semi-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transition-operator_semi-group&oldid=26962