Difference between revisions of "Prenex formula"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0744201.png | ||
+ | $#A+1 = 27 n = 0 | ||
+ | $#C+1 = 27 : ~/encyclopedia/old_files/data/P074/P.0704420 Prenex formula | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A formula from the [[Restricted predicate calculus|restricted predicate calculus]] having the form | A formula from the [[Restricted predicate calculus|restricted predicate calculus]] having the form | ||
− | + | $$ | |
+ | Q _ {1} x _ {1} \dots Q _ {n} x _ {n} \Psi , | ||
+ | $$ | ||
− | where | + | where $ Q _ {i} $ |
+ | denotes the [[Universal quantifier|universal quantifier]] $ \forall $ | ||
+ | or the [[Existential quantifier|existential quantifier]] $ \exists $, | ||
+ | the variables $ x _ {i} , x _ {j} $ | ||
+ | are distinct for $ i \neq j $, | ||
+ | and $ \psi $ | ||
+ | is a formula without quantifiers. Prenex formulas are also called prenex normal forms or prenex forms. | ||
− | For each formula | + | For each formula $ \phi $ |
+ | of the language of the restricted predicate calculus there is a prenex formula that is logically equivalent to $ \phi $ | ||
+ | in the classical [[Predicate calculus|predicate calculus]]. The procedure of finding a prenex formula is based on the following equivalences, which can be deduced in the classical predicate calculus: | ||
− | + | $$ | |
+ | ( \forall x \phi ( x) \supset \Psi ) \equiv \ | ||
+ | \exists x ^ \prime ( \phi ( x ^ \prime ) \supset \Psi ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | \exists x \phi ( x) \supset \Psi \equiv \ | ||
+ | \forall x ^ \prime ( \phi ( x ^ \prime ) \supset \Psi ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | \Psi \supset \forall x \phi ( x) \equiv \ | ||
+ | \forall x ^ \prime ( \Psi \supset \phi ( x ^ \prime ) ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | \Psi \supset \exists x \phi ( x) \equiv \ | ||
+ | \exists x ^ \prime ( \Psi \supset \phi ( x ^ \prime ) ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | \neg \forall x \phi \equiv \exists x \neg \phi ,\ \ | ||
+ | \neg \exists x \phi \equiv \forall x \neg \phi , | ||
+ | $$ | ||
− | + | $$ | |
+ | Q y \forall x \phi \equiv \forall x \phi ,\ Q y \exists x \phi \equiv \exists x \phi , | ||
+ | $$ | ||
− | where | + | where $ x ^ \prime $ |
+ | is any variable not appearing as a free variable in $ \phi ( x) $ | ||
+ | or $ \psi $, | ||
+ | and $ \phi ( x ^ \prime ) $ | ||
+ | can be obtained from $ \phi ( x) $ | ||
+ | by changing all free appearances of $ x $ | ||
+ | to $ x ^ \prime $; | ||
+ | the variable $ y $ | ||
+ | does not appear as a free variable in $ \forall x \phi $ | ||
+ | or $ \exists x \phi $. | ||
+ | To use the above equivalences one has to first express all logical operators by $ \supset $ | ||
+ | and $ \neg $ | ||
+ | and then move all quantifiers to the left by applying the equivalences. The prenex formula thus obtained is called the prenex form of the given formula. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Mendelson, "Introduction to mathematical logic" , v. Nostrand (1964) {{MR|0164867}} {{ZBL|1173.03001}} {{ZBL|0915.03002}} {{ZBL|0681.03001}} {{ZBL|0534.03001}} {{ZBL|0498.03001}} {{ZBL|0192.01901}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Mendelson, "Introduction to mathematical logic" , v. Nostrand (1964) {{MR|0164867}} {{ZBL|1173.03001}} {{ZBL|0915.03002}} {{ZBL|0681.03001}} {{ZBL|0534.03001}} {{ZBL|0498.03001}} {{ZBL|0192.01901}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.C. Kleene, "Introduction to metamathematics" , North-Holland (1950) pp. Chapt. VII, §35 {{MR|1234051}} {{MR|1570642}} {{MR|0051790}} {{ZBL|0875.03002}} {{ZBL|0604.03002}} {{ZBL|0109.00509}} {{ZBL|0047.00703}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Fraissé, "Course of mathematical logic" , '''1''' , Reidel (1973) pp. Sect. 5.1.1ff {{MR|0345784}} {{ZBL|0262.02001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.C. Kleene, "Introduction to metamathematics" , North-Holland (1950) pp. Chapt. VII, §35 {{MR|1234051}} {{MR|1570642}} {{MR|0051790}} {{ZBL|0875.03002}} {{ZBL|0604.03002}} {{ZBL|0109.00509}} {{ZBL|0047.00703}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Fraissé, "Course of mathematical logic" , '''1''' , Reidel (1973) pp. Sect. 5.1.1ff {{MR|0345784}} {{ZBL|0262.02001}} </TD></TR></table> |
Latest revision as of 08:07, 6 June 2020
A formula from the restricted predicate calculus having the form
$$ Q _ {1} x _ {1} \dots Q _ {n} x _ {n} \Psi , $$
where $ Q _ {i} $ denotes the universal quantifier $ \forall $ or the existential quantifier $ \exists $, the variables $ x _ {i} , x _ {j} $ are distinct for $ i \neq j $, and $ \psi $ is a formula without quantifiers. Prenex formulas are also called prenex normal forms or prenex forms.
For each formula $ \phi $ of the language of the restricted predicate calculus there is a prenex formula that is logically equivalent to $ \phi $ in the classical predicate calculus. The procedure of finding a prenex formula is based on the following equivalences, which can be deduced in the classical predicate calculus:
$$ ( \forall x \phi ( x) \supset \Psi ) \equiv \ \exists x ^ \prime ( \phi ( x ^ \prime ) \supset \Psi ) , $$
$$ \exists x \phi ( x) \supset \Psi \equiv \ \forall x ^ \prime ( \phi ( x ^ \prime ) \supset \Psi ) , $$
$$ \Psi \supset \forall x \phi ( x) \equiv \ \forall x ^ \prime ( \Psi \supset \phi ( x ^ \prime ) ) , $$
$$ \Psi \supset \exists x \phi ( x) \equiv \ \exists x ^ \prime ( \Psi \supset \phi ( x ^ \prime ) ) , $$
$$ \neg \forall x \phi \equiv \exists x \neg \phi ,\ \ \neg \exists x \phi \equiv \forall x \neg \phi , $$
$$ Q y \forall x \phi \equiv \forall x \phi ,\ Q y \exists x \phi \equiv \exists x \phi , $$
where $ x ^ \prime $ is any variable not appearing as a free variable in $ \phi ( x) $ or $ \psi $, and $ \phi ( x ^ \prime ) $ can be obtained from $ \phi ( x) $ by changing all free appearances of $ x $ to $ x ^ \prime $; the variable $ y $ does not appear as a free variable in $ \forall x \phi $ or $ \exists x \phi $. To use the above equivalences one has to first express all logical operators by $ \supset $ and $ \neg $ and then move all quantifiers to the left by applying the equivalences. The prenex formula thus obtained is called the prenex form of the given formula.
References
[1] | E. Mendelson, "Introduction to mathematical logic" , v. Nostrand (1964) MR0164867 Zbl 1173.03001 Zbl 0915.03002 Zbl 0681.03001 Zbl 0534.03001 Zbl 0498.03001 Zbl 0192.01901 |
Comments
References
[a1] | S.C. Kleene, "Introduction to metamathematics" , North-Holland (1950) pp. Chapt. VII, §35 MR1234051 MR1570642 MR0051790 Zbl 0875.03002 Zbl 0604.03002 Zbl 0109.00509 Zbl 0047.00703 |
[a2] | R. Fraissé, "Course of mathematical logic" , 1 , Reidel (1973) pp. Sect. 5.1.1ff MR0345784 Zbl 0262.02001 |
Prenex formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Prenex_formula&oldid=24538