Difference between revisions of "Poincaré-Dulac theorem"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
m (fixing spaces) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0730301.png | ||
+ | $#A+1 = 115 n = 0 | ||
+ | $#C+1 = 115 : ~/encyclopedia/old_files/data/P073/P.0703030 Poincar\Aee\ANDDulac theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Consider a (formal) differential equation in $ n $ variables, | |
− | + | $$ \tag{a1 } | |
+ | \dot{x} = A x + ( \textrm{ higher degree } ) . | ||
+ | $$ | ||
− | + | A collection of eigen values $ ( \lambda _ {1}, \dots, \lambda _ {n} ) $ | |
+ | is said to be resonant if there is a relation of the form | ||
− | + | $$ | |
+ | \lambda _ {r} = m _ {1} \lambda _ {1} + \dots + m _ {n} \lambda _ {n} $$ | ||
− | + | for some $ r \in \{ 1, \dots, n \} $, | |
+ | with $ m _ {i} \in \mathbf N \cup \{ 0 \} $, | ||
+ | $ \sum _ {i=1} ^ {n} m _ {i} \geq 2 $. | ||
+ | The Poincaré theorem on canonical forms for formal differential equations says that if the eigen values of the matrix $ A $ | ||
+ | in (a1) are non-resonant, then there is a formal substitution of variables of the form $ y = x+ $(higher degree) which makes (a1) take the form | ||
− | + | $$ \tag{a2 } | |
+ | \dot{y} = A y. | ||
+ | $$ | ||
− | + | Part of the Poincaré–Dulac theorem says that there is for any equation of the form (a1) a formal change of variables $ y = x + $(higher degree) which transforms (a1) into an equation of the form | |
− | + | $$ \tag{a3 } | |
+ | \dot{y} = Ay + w( y) , | ||
+ | $$ | ||
− | + | where $ w( y) $ | |
+ | is a power series of which all monomials are resonant. Here a monomial $ y ^ {m} e _ {r} $, | ||
+ | where $ e _ {r} $ | ||
+ | is the $ r $-th element of the standard basis, is called resonant if $ \lambda _ {r} = m _ {1} \lambda _ {1} + \dots + m _ {n} \lambda _ {n} $, | ||
+ | where the $ \lambda _ {i} $ | ||
+ | are the eigen values of $ A $. | ||
− | + | A point $ \lambda = ( \lambda _ {1}, \dots, \lambda _ {n} ) \in \mathbf C ^ {n} $ (a collection of eigen values) belongs to the Poincaré domain if 0 is not in the convex hull of the $ \lambda _ {1} \dots \lambda _ {n} $; | |
+ | the complementary set of all $ \lambda $ | ||
+ | such that $ 0 $ | ||
+ | is in the convex hull of the $ \lambda _ {1}, \dots, \lambda _ {n} $ | ||
+ | is called the Siegel domain. The second part of the Poincaré–Dulac theorem now says that if the right-hand side of (a1) is holomorphic and the eigen value set $ ( \lambda _ {1}, \dots, \lambda _ {n} ) $ | ||
+ | of $ A $ | ||
+ | is in the Poincaré domain, then there is a holomorphic change of variables $ y = x + $(higher degree) taking (a1) to a canonical form (a3), with $ w( y) $ | ||
+ | a polynomial in $ y $ | ||
+ | consisting of resonant monomials. | ||
− | + | A point $ \lambda \in \mathbf C ^ {n} $ | |
+ | is said to be of type $ ( C, \nu ) $, | ||
+ | where $ C $ | ||
+ | is a constant, if for all $ r = 1, \dots, n $, | ||
− | + | $$ | |
+ | \left | \lambda _ {r} - \sum _ { i= 1} ^ { n } m _ {i} \lambda _ {i} \right | \geq \ | ||
+ | C \left ( \sum _ { i= 1} ^ { n } m _ {i} \right ) ^ {- \nu } . | ||
+ | $$ | ||
− | + | The Siegel theorem says that if the eigen values of $ A $ | |
+ | constitute a vector of type $ ( C, \nu ) $ | ||
+ | and (a1) is holomorphic, then in a neighbourhood of zero (a1) is holomorphically equivalent to (a2), i.e. there is a holomorphic change of coordinates taking (a1) to (a2). | ||
− | + | In the differentiable ( $ C ^ \infty $-) case there are related results, [[#References|[a3]]]. Consider a $ C ^ \infty $ | |
+ | vector field $ X= \sum a ^ {i} ( x) ( \partial / {\partial x ^ {i} } ) $ (or the corresponding autonomous system of differential equations $ {\dot{x} } {} ^ {i} = a ^ {i} ( x) $). | ||
+ | A critical point of $ X $, | ||
+ | i.e. a point $ p $ | ||
+ | such that $ a ^ {i} ( p) = 0 $, | ||
+ | $ i = 1, \dots, n $, | ||
+ | is called an elementary critical point | ||
− | + | $$ | |
+ | $$ | ||
− | The Poincaré–Dulac theorem can be seen as a result on canonical forms of non-linear representations of the one-dimensional nilpotent Lie algebra | + | if the real part of each eigen value of the matrix $ ( {\partial a ^ {i} } / {\partial x ^ {j} } ) ( p) $ |
+ | is non-zero. Let $ X $ | ||
+ | be a $ C ^ \infty $ | ||
+ | vector field with 0 as an elementary critical point. Then in a neighbourhood of zero, $ X $ | ||
+ | decomposes as a sum $ X = S+ N $ | ||
+ | of $ C ^ \infty $ | ||
+ | vector fields $ S $ | ||
+ | and $ N $ | ||
+ | satisfying $ [ S, N] = 0 $, | ||
+ | and with respect to a suitable coordinate system $ y $, | ||
+ | $ S $ | ||
+ | is of the form $ S = \sum _ {i,j} c _ {j} ^ {i} y ^ {j} ( \partial / {\partial y _ {j} } ) $ | ||
+ | with the matrix $ ( c _ {j} ^ {i} ) $ | ||
+ | similar to a diagonal matrix, and the linear part of $ N $ | ||
+ | can be represented by a nilpotent matrix (Chen's decomposition theorem). This is a non-linear $ C ^ \infty $ | ||
+ | analogue of the decomposition of a matrix into commuting semi-simple and nilpotent parts, cf. [[Jordan decomposition|Jordan decomposition]]. Now let $ Y = \sum b ^ {i} ( x) ( \partial / {\partial x ^ {i} } ) $ | ||
+ | be a second vector field with 0 as an elementary critical point and let $ {\widehat{a} } {} ^ {i} ( x) $ | ||
+ | and $ {\widehat{b} } {} ^ {i} ( x) $ | ||
+ | be the [[Taylor series|Taylor series]] of $ a ^ {i} ( x) $ | ||
+ | and $ b ^ {i} ( x) $ | ||
+ | around 0. Then there exists a $ C ^ \infty $ | ||
+ | transformation around 0 which carries $ X $ | ||
+ | to $ Y $ | ||
+ | if and only if there exists a formal transformation which carries the formal vector field $ \sum {\widehat{a} } {} ^ {i} ( x) ( \partial / {\partial x ^ {i} } ) $ | ||
+ | to the formal vector field $ \sum {\widehat{b} } {} ^ {i} ( x) ( \partial / {\partial x ^ {i} } ) $. | ||
+ | |||
+ | A $ C ^ \infty $-linearization result due to S. Sternberg says the following [[#References|[a4]]], [[#References|[a5]]]. If the matrix of linear terms of the equations $ {\dot{x} } {} ^ {i} = \sum a ^ {i} ( x) $, | ||
+ | $ a ^ {i} ( 0) = 0 $, | ||
+ | is semi-simple and the set of eigen values of this matrix is non-resonant, then there is a $ C ^ \infty $ | ||
+ | change of coordinates which linearizes the equations. For results in the $ C ^ {1} $ | ||
+ | and $ C ^ {0} $ | ||
+ | case cf. [[#References|[a6]]], [[#References|[a7]]]. | ||
+ | |||
+ | The Poincaré–Dulac theorem can be seen as a result on canonical forms of non-linear representations of the one-dimensional nilpotent Lie algebra $ \mathfrak g = \mathbf C $. | ||
+ | In this form it generalizes to arbitrary nilpotent Lie algebras. Let $ \mathfrak g $ | ||
+ | be a finite-dimensional nilpotent Lie algebra over $ \mathbf C $ (cf. [[Lie algebra, nilpotent|Lie algebra, nilpotent]]). Let $ V _ {n} $ | ||
+ | be the Lie algebra of formal vector fields $ \sum a ^ {i} ( x) ( \partial / {\partial x ^ {i} } ) $, | ||
+ | $ a ^ {i} ( 0) = 0 $. | ||
+ | A formal non-linear representation of $ \mathfrak g $ | ||
+ | is a homomorphism $ \rho = \sum _ {n \geq 1 } \rho ^ {n} $ | ||
+ | of $ \mathfrak g $ | ||
+ | in $ V _ {n} $ (where $ \rho ^ {n} $ | ||
+ | is the homogeneous part of degree $ n $ | ||
+ | in $ \rho $). | ||
+ | Such a representation is holomorphic if for each $ X $ | ||
+ | the series $ \sum \rho ^ {n} ( X) $ | ||
+ | converges in some neighbourhood of $ 0 $. | ||
+ | Then $ \rho ^ {1} $ | ||
+ | is a [[Linear representation|linear representation]] of $ \mathfrak g $, | ||
+ | called the linear part of $ \rho $. | ||
+ | A formal vector field $ \xi \in V _ {n} $ | ||
+ | is called resonant with respect to a linear representation $ \sigma ^ {1} $ | ||
+ | of $ \mathfrak g $ | ||
+ | if $ [ \sigma ^ {1} ( X), \xi ] = 0 $ | ||
+ | for all $ X \in \mathfrak g $. | ||
+ | The representation $ \rho $ | ||
+ | is normal if each $ \rho ( X) $ | ||
+ | is resonant with respect to the semi-simple part (cf. [[Jordan decomposition|Jordan decomposition]]) of the linear representation $ \rho ^ {1} $. | ||
+ | The Poincaré–Dulac theorem for nilpotent Lie algebras, [[#References|[a8]]], now says that $ \rho $ | ||
+ | is a holomorphic non-linear representation of a nilpotent Lie algebra $ \mathfrak g $ | ||
+ | over $ \mathbf C $, | ||
+ | and if $ \rho $ | ||
+ | satisfies the Poincaré condition, then $ \rho $ | ||
+ | is holomorphically equivalent to a polynomial normal representation. In this setting the Poincaré condition (i.e., belonging to the Poincaré domain) takes the form that $ 0 $ | ||
+ | does not belong to the convex hull of the weights (cf. [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]) of the linear part $ \rho ^ {1} $ | ||
+ | of $ \rho $. | ||
For rather complete accounts of the Poincaré–Dulac and Siegel theorems cf. [[#References|[a9]]], [[#References|[a10]]]. | For rather complete accounts of the Poincaré–Dulac and Siegel theorems cf. [[#References|[a9]]], [[#References|[a10]]]. | ||
− | In control theory one studies equations | + | In control theory one studies equations $ \dot{x} = f( x, u) $ |
+ | with a control parameter $ u $; | ||
+ | for instance, $ \dot{x} = f( x) + u _ {1} g _ {1} ( x) + \dots + u _ {m} g _ {m} ( x) $. | ||
+ | This naturally leads to linearization problems for families of vector fields. In this setting more general notions of equivalence, involving, in particular, feedback laws $ u = h( x, v) $, | ||
+ | are also natural (linearization by feedback). A selection of references is [[#References|[a11]]]–[[#References|[a13]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Poincaré, , ''Oeuvres'' , '''1''' , Gauthier-Villars (1951) pp. UL-CXXXII {{MR|1787680}} {{MR|1401792}} {{MR|1401348}} {{MR|1401791}} {{MR|0392476}} {{MR|0392475}} {{MR|1554897}} {{ZBL|0894.01021}} {{ZBL|0894.01020}} {{ZBL|0894.01019}} {{ZBL|0072.24103}} {{ZBL|0059.00104}} {{ZBL|0059.00103}} {{ZBL|0049.44102}} {{ZBL|0041.37403}} {{ZBL|0041.37402}} {{ZBL|46.0004.01}} {{ZBL|36.0022.04}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Dulac, "Recherches sur les points singuliers des equations différentielles" ''J. Ecole Polytechn. Ser. II'' , '''9''' (1904) pp. 1–25</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K.-T. Chen, "Equivalence and decomposition of vectorfields about an elementary critical point" ''Amer. J. Math.'' , '''85''' (1963) pp. 693–722</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> F. Bruhat, "Travaux de Sternberg" ''Sém. Bourbaki'' , '''13''' (1960–1961) pp. Exp. 2187</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> S. Sternberg, "On the structure of a local homeomorphism" ''Amer. J. Math.'' , '''80''' (1958) pp. 623–631</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> M. Nagumo, K. Isé, "On the normal forms of differential equations in the neighbourhood of an equilibrium point" ''Osaka Math. J.'' , '''9''' (1957) pp. 221–234</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> P. Hartman, "On the local linearization of differential equations" ''Proc. Amer. Math. Soc.'' , '''14''' (1963) pp. 568–573</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> D. Arnal, M. Ben Ammar, G. Pinczon, "The Poincaré–Dulac theorem for nonlinear representations of nilpotent Lie algebras" ''Lett. Math. Phys.'' , '''8''' (1984) pp. 467–476</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> V.I. Arnol'd, "Geometrical methods in the theory of ordinary differential equations" , Springer (1977) pp. Chapt. V (Translated from Russian)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> A.D. Bryuno, "Analytic forms of differential equations" ''Trans. Moscow Math. Soc.'' , '''25''' (1971) pp. 131–288 ''Trudy Moskov. Mat. Obshch.'' , '''25''' (1971) pp. 119–262</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> L.R. Hunt, R. Su, "Linear equivalents of nonlinear time-varying systems" , ''Internat. Symp. Math. Th. Networks and Systems Santa Monica, 1983'' , '''4''' , Western Periodicals (1981) pp. 119–123</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> B. Jakubczyk, W. Respondek, "On the linearization of control systems" ''Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys.'' , '''28''' (1980) pp. 517–522</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> E.S. Livingston, D.L. Elliott, "Linearization of families of vectorfields" ''J. Diff. Equations'' , '''55''' (1984) pp. 289–299</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Poincaré, , ''Oeuvres'' , '''1''' , Gauthier-Villars (1951) pp. UL-CXXXII {{MR|1787680}} {{MR|1401792}} {{MR|1401348}} {{MR|1401791}} {{MR|0392476}} {{MR|0392475}} {{MR|1554897}} {{ZBL|0894.01021}} {{ZBL|0894.01020}} {{ZBL|0894.01019}} {{ZBL|0072.24103}} {{ZBL|0059.00104}} {{ZBL|0059.00103}} {{ZBL|0049.44102}} {{ZBL|0041.37403}} {{ZBL|0041.37402}} {{ZBL|46.0004.01}} {{ZBL|36.0022.04}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Dulac, "Recherches sur les points singuliers des equations différentielles" ''J. Ecole Polytechn. Ser. II'' , '''9''' (1904) pp. 1–25</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K.-T. Chen, "Equivalence and decomposition of vectorfields about an elementary critical point" ''Amer. J. Math.'' , '''85''' (1963) pp. 693–722</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> F. Bruhat, "Travaux de Sternberg" ''Sém. Bourbaki'' , '''13''' (1960–1961) pp. Exp. 2187</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> S. Sternberg, "On the structure of a local homeomorphism" ''Amer. J. Math.'' , '''80''' (1958) pp. 623–631</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> M. Nagumo, K. Isé, "On the normal forms of differential equations in the neighbourhood of an equilibrium point" ''Osaka Math. J.'' , '''9''' (1957) pp. 221–234</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> P. Hartman, "On the local linearization of differential equations" ''Proc. Amer. Math. Soc.'' , '''14''' (1963) pp. 568–573</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> D. Arnal, M. Ben Ammar, G. Pinczon, "The Poincaré–Dulac theorem for nonlinear representations of nilpotent Lie algebras" ''Lett. Math. Phys.'' , '''8''' (1984) pp. 467–476</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> V.I. Arnol'd, "Geometrical methods in the theory of ordinary differential equations" , Springer (1977) pp. Chapt. V (Translated from Russian)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> A.D. Bryuno, "Analytic forms of differential equations" ''Trans. Moscow Math. Soc.'' , '''25''' (1971) pp. 131–288 ''Trudy Moskov. Mat. Obshch.'' , '''25''' (1971) pp. 119–262</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> L.R. Hunt, R. Su, "Linear equivalents of nonlinear time-varying systems" , ''Internat. Symp. Math. Th. Networks and Systems Santa Monica, 1983'' , '''4''' , Western Periodicals (1981) pp. 119–123</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> B. Jakubczyk, W. Respondek, "On the linearization of control systems" ''Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys.'' , '''28''' (1980) pp. 517–522</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> E.S. Livingston, D.L. Elliott, "Linearization of families of vectorfields" ''J. Diff. Equations'' , '''55''' (1984) pp. 289–299</TD></TR></table> |
Latest revision as of 05:14, 24 February 2022
Consider a (formal) differential equation in $ n $ variables,
$$ \tag{a1 } \dot{x} = A x + ( \textrm{ higher degree } ) . $$
A collection of eigen values $ ( \lambda _ {1}, \dots, \lambda _ {n} ) $ is said to be resonant if there is a relation of the form
$$ \lambda _ {r} = m _ {1} \lambda _ {1} + \dots + m _ {n} \lambda _ {n} $$
for some $ r \in \{ 1, \dots, n \} $, with $ m _ {i} \in \mathbf N \cup \{ 0 \} $, $ \sum _ {i=1} ^ {n} m _ {i} \geq 2 $. The Poincaré theorem on canonical forms for formal differential equations says that if the eigen values of the matrix $ A $ in (a1) are non-resonant, then there is a formal substitution of variables of the form $ y = x+ $(higher degree) which makes (a1) take the form
$$ \tag{a2 } \dot{y} = A y. $$
Part of the Poincaré–Dulac theorem says that there is for any equation of the form (a1) a formal change of variables $ y = x + $(higher degree) which transforms (a1) into an equation of the form
$$ \tag{a3 } \dot{y} = Ay + w( y) , $$
where $ w( y) $ is a power series of which all monomials are resonant. Here a monomial $ y ^ {m} e _ {r} $, where $ e _ {r} $ is the $ r $-th element of the standard basis, is called resonant if $ \lambda _ {r} = m _ {1} \lambda _ {1} + \dots + m _ {n} \lambda _ {n} $, where the $ \lambda _ {i} $ are the eigen values of $ A $.
A point $ \lambda = ( \lambda _ {1}, \dots, \lambda _ {n} ) \in \mathbf C ^ {n} $ (a collection of eigen values) belongs to the Poincaré domain if 0 is not in the convex hull of the $ \lambda _ {1} \dots \lambda _ {n} $; the complementary set of all $ \lambda $ such that $ 0 $ is in the convex hull of the $ \lambda _ {1}, \dots, \lambda _ {n} $ is called the Siegel domain. The second part of the Poincaré–Dulac theorem now says that if the right-hand side of (a1) is holomorphic and the eigen value set $ ( \lambda _ {1}, \dots, \lambda _ {n} ) $ of $ A $ is in the Poincaré domain, then there is a holomorphic change of variables $ y = x + $(higher degree) taking (a1) to a canonical form (a3), with $ w( y) $ a polynomial in $ y $ consisting of resonant monomials.
A point $ \lambda \in \mathbf C ^ {n} $ is said to be of type $ ( C, \nu ) $, where $ C $ is a constant, if for all $ r = 1, \dots, n $,
$$ \left | \lambda _ {r} - \sum _ { i= 1} ^ { n } m _ {i} \lambda _ {i} \right | \geq \ C \left ( \sum _ { i= 1} ^ { n } m _ {i} \right ) ^ {- \nu } . $$
The Siegel theorem says that if the eigen values of $ A $ constitute a vector of type $ ( C, \nu ) $ and (a1) is holomorphic, then in a neighbourhood of zero (a1) is holomorphically equivalent to (a2), i.e. there is a holomorphic change of coordinates taking (a1) to (a2).
In the differentiable ( $ C ^ \infty $-) case there are related results, [a3]. Consider a $ C ^ \infty $ vector field $ X= \sum a ^ {i} ( x) ( \partial / {\partial x ^ {i} } ) $ (or the corresponding autonomous system of differential equations $ {\dot{x} } {} ^ {i} = a ^ {i} ( x) $). A critical point of $ X $, i.e. a point $ p $ such that $ a ^ {i} ( p) = 0 $, $ i = 1, \dots, n $, is called an elementary critical point
$$ $$
if the real part of each eigen value of the matrix $ ( {\partial a ^ {i} } / {\partial x ^ {j} } ) ( p) $ is non-zero. Let $ X $ be a $ C ^ \infty $ vector field with 0 as an elementary critical point. Then in a neighbourhood of zero, $ X $ decomposes as a sum $ X = S+ N $ of $ C ^ \infty $ vector fields $ S $ and $ N $ satisfying $ [ S, N] = 0 $, and with respect to a suitable coordinate system $ y $, $ S $ is of the form $ S = \sum _ {i,j} c _ {j} ^ {i} y ^ {j} ( \partial / {\partial y _ {j} } ) $ with the matrix $ ( c _ {j} ^ {i} ) $ similar to a diagonal matrix, and the linear part of $ N $ can be represented by a nilpotent matrix (Chen's decomposition theorem). This is a non-linear $ C ^ \infty $ analogue of the decomposition of a matrix into commuting semi-simple and nilpotent parts, cf. Jordan decomposition. Now let $ Y = \sum b ^ {i} ( x) ( \partial / {\partial x ^ {i} } ) $ be a second vector field with 0 as an elementary critical point and let $ {\widehat{a} } {} ^ {i} ( x) $ and $ {\widehat{b} } {} ^ {i} ( x) $ be the Taylor series of $ a ^ {i} ( x) $ and $ b ^ {i} ( x) $ around 0. Then there exists a $ C ^ \infty $ transformation around 0 which carries $ X $ to $ Y $ if and only if there exists a formal transformation which carries the formal vector field $ \sum {\widehat{a} } {} ^ {i} ( x) ( \partial / {\partial x ^ {i} } ) $ to the formal vector field $ \sum {\widehat{b} } {} ^ {i} ( x) ( \partial / {\partial x ^ {i} } ) $.
A $ C ^ \infty $-linearization result due to S. Sternberg says the following [a4], [a5]. If the matrix of linear terms of the equations $ {\dot{x} } {} ^ {i} = \sum a ^ {i} ( x) $, $ a ^ {i} ( 0) = 0 $, is semi-simple and the set of eigen values of this matrix is non-resonant, then there is a $ C ^ \infty $ change of coordinates which linearizes the equations. For results in the $ C ^ {1} $ and $ C ^ {0} $ case cf. [a6], [a7].
The Poincaré–Dulac theorem can be seen as a result on canonical forms of non-linear representations of the one-dimensional nilpotent Lie algebra $ \mathfrak g = \mathbf C $. In this form it generalizes to arbitrary nilpotent Lie algebras. Let $ \mathfrak g $ be a finite-dimensional nilpotent Lie algebra over $ \mathbf C $ (cf. Lie algebra, nilpotent). Let $ V _ {n} $ be the Lie algebra of formal vector fields $ \sum a ^ {i} ( x) ( \partial / {\partial x ^ {i} } ) $, $ a ^ {i} ( 0) = 0 $. A formal non-linear representation of $ \mathfrak g $ is a homomorphism $ \rho = \sum _ {n \geq 1 } \rho ^ {n} $ of $ \mathfrak g $ in $ V _ {n} $ (where $ \rho ^ {n} $ is the homogeneous part of degree $ n $ in $ \rho $). Such a representation is holomorphic if for each $ X $ the series $ \sum \rho ^ {n} ( X) $ converges in some neighbourhood of $ 0 $. Then $ \rho ^ {1} $ is a linear representation of $ \mathfrak g $, called the linear part of $ \rho $. A formal vector field $ \xi \in V _ {n} $ is called resonant with respect to a linear representation $ \sigma ^ {1} $ of $ \mathfrak g $ if $ [ \sigma ^ {1} ( X), \xi ] = 0 $ for all $ X \in \mathfrak g $. The representation $ \rho $ is normal if each $ \rho ( X) $ is resonant with respect to the semi-simple part (cf. Jordan decomposition) of the linear representation $ \rho ^ {1} $. The Poincaré–Dulac theorem for nilpotent Lie algebras, [a8], now says that $ \rho $ is a holomorphic non-linear representation of a nilpotent Lie algebra $ \mathfrak g $ over $ \mathbf C $, and if $ \rho $ satisfies the Poincaré condition, then $ \rho $ is holomorphically equivalent to a polynomial normal representation. In this setting the Poincaré condition (i.e., belonging to the Poincaré domain) takes the form that $ 0 $ does not belong to the convex hull of the weights (cf. Weight of a representation of a Lie algebra) of the linear part $ \rho ^ {1} $ of $ \rho $.
For rather complete accounts of the Poincaré–Dulac and Siegel theorems cf. [a9], [a10].
In control theory one studies equations $ \dot{x} = f( x, u) $ with a control parameter $ u $; for instance, $ \dot{x} = f( x) + u _ {1} g _ {1} ( x) + \dots + u _ {m} g _ {m} ( x) $. This naturally leads to linearization problems for families of vector fields. In this setting more general notions of equivalence, involving, in particular, feedback laws $ u = h( x, v) $, are also natural (linearization by feedback). A selection of references is [a11]–[a13].
References
[a1] | H. Poincaré, , Oeuvres , 1 , Gauthier-Villars (1951) pp. UL-CXXXII MR1787680 MR1401792 MR1401348 MR1401791 MR0392476 MR0392475 MR1554897 Zbl 0894.01021 Zbl 0894.01020 Zbl 0894.01019 Zbl 0072.24103 Zbl 0059.00104 Zbl 0059.00103 Zbl 0049.44102 Zbl 0041.37403 Zbl 0041.37402 Zbl 46.0004.01 Zbl 36.0022.04 |
[a2] | H. Dulac, "Recherches sur les points singuliers des equations différentielles" J. Ecole Polytechn. Ser. II , 9 (1904) pp. 1–25 |
[a3] | K.-T. Chen, "Equivalence and decomposition of vectorfields about an elementary critical point" Amer. J. Math. , 85 (1963) pp. 693–722 |
[a4] | F. Bruhat, "Travaux de Sternberg" Sém. Bourbaki , 13 (1960–1961) pp. Exp. 2187 |
[a5] | S. Sternberg, "On the structure of a local homeomorphism" Amer. J. Math. , 80 (1958) pp. 623–631 |
[a6] | M. Nagumo, K. Isé, "On the normal forms of differential equations in the neighbourhood of an equilibrium point" Osaka Math. J. , 9 (1957) pp. 221–234 |
[a7] | P. Hartman, "On the local linearization of differential equations" Proc. Amer. Math. Soc. , 14 (1963) pp. 568–573 |
[a8] | D. Arnal, M. Ben Ammar, G. Pinczon, "The Poincaré–Dulac theorem for nonlinear representations of nilpotent Lie algebras" Lett. Math. Phys. , 8 (1984) pp. 467–476 |
[a9] | V.I. Arnol'd, "Geometrical methods in the theory of ordinary differential equations" , Springer (1977) pp. Chapt. V (Translated from Russian) |
[a10] | A.D. Bryuno, "Analytic forms of differential equations" Trans. Moscow Math. Soc. , 25 (1971) pp. 131–288 Trudy Moskov. Mat. Obshch. , 25 (1971) pp. 119–262 |
[a11] | L.R. Hunt, R. Su, "Linear equivalents of nonlinear time-varying systems" , Internat. Symp. Math. Th. Networks and Systems Santa Monica, 1983 , 4 , Western Periodicals (1981) pp. 119–123 |
[a12] | B. Jakubczyk, W. Respondek, "On the linearization of control systems" Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys. , 28 (1980) pp. 517–522 |
[a13] | E.S. Livingston, D.L. Elliott, "Linearization of families of vectorfields" J. Diff. Equations , 55 (1984) pp. 289–299 |
Poincaré-Dulac theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poincar%C3%A9-Dulac_theorem&oldid=24534