|
|
(6 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
| {{MSC|15B51|60J10}} | | {{MSC|15B51|60J10}} |
| + | {{TEX|done}} |
| + | [[Category:Special matrices]] [[Category:Markov chains]] |
| | | |
− | [[Category:Special matrices]] | + | A stochastic matrix is a square (possibly infinite) matrix |
− | [[Category:Markov processes]] | + | $P=[p_{ij}]$ with non-negative elements, for which |
| + | $$ |
| + | \sum_j p_{ij} = 1 \quad \text{for all $i$.} |
| + | $$ |
| + | The set of all stochastic matrices of |
| + | order $n$ is the convex hull of the set of $n^n$ stochastic matrices |
| + | consisting of zeros and ones. Any stochastic matrix $P$ can be |
| + | considered as the |
| + | [[Matrix of transition probabilities|matrix of transition |
| + | probabilities]] of a discrete |
| + | [[Markov chain|Markov chain]] $\xi^P(t)$. |
| | | |
− | A square (possibly infinite) matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s0901501.png" /> with non-negative elements, for which
| + | The absolute values of the eigenvalues of stochastic matrices do not |
| + | exceed 1; 1 is an eigenvalue of any stochastic matrix. If a stochastic |
| + | matrix $P$ is indecomposable (the Markov chain $\xi^P(t)$ has one |
| + | class of positive states), then 1 is a simple eigenvalue of $P$ |
| + | (i.e. it has multiplicity 1); in general, the multiplicity of the |
| + | eigenvalue 1 coincides with the number of classes of positive states |
| + | of the Markov chain $\xi^P(t)$. If a stochastic matrix is |
| + | indecomposable and if the class of positive states of the Markov chain |
| + | has period $d$, then the set of all eigenvalues of $P$, as a set of |
| + | points in the complex plane, is mapped onto itself by rotation through |
| + | an angle $2\pi/d$. When $d=1$, the stochastic matrix $P$ and the |
| + | Markov chain $\xi^P(t)$ are called aperiodic. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s0901502.png" /></td> </tr></table>
| + | The left eigenvectors $\pi = \{\pi_j\}$ of $P$ of finite order, |
| + | corresponding to the eigenvalue 1: |
| + | \begin{equation} |
| + | \label{eq1} |
| + | \pi_j = \sum_i \pi_i p_{ij} |
| + | \quad \text{for all}\ j\,, |
| + | \end{equation} |
| + | and satisfying the conditions $\pi_j \geq |
| + | 0$, $\sum_j\pi_j = 1$, define the stationary distributions of the |
| + | Markov chain $\xi^P(t)$; in the case of an indecomposable matrix $P$, |
| + | the stationary distribution is unique. |
| | | |
− | The set of all stochastic matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s0901503.png" /> is the convex hull of the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s0901504.png" /> stochastic matrices consisting of zeros and ones. Any stochastic matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s0901505.png" /> can be considered as the [[Matrix of transition probabilities|matrix of transition probabilities]] of a discrete [[Markov chain|Markov chain]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s0901506.png" />.
| + | If $P$ is an indecomposable aperiodic stochastic matrix of finite |
| + | order, then the following limit exists: |
| + | \begin{equation} |
| + | \label{eq2} |
| + | \lim_{n\rightarrow\infty} P^n = \Pi, |
| + | \end{equation} |
| + | where $\Pi$ is the matrix |
| + | all rows of which coincide with the vector $\pi$ (see also |
| + | [[Markov chain, ergodic|Markov chain, ergodic]]; for infinite |
| + | stochastic matrices $P$, the system of equations \ref{eq1} may have no |
| + | non-zero non-negative solutions that satisfy the condition |
| + | $\sum_j \pi_j < \infty$; in |
| + | this case $\Pi$ is the zero matrix). The rate of convergence in \ref{eq2} can |
| + | be estimated by a geometric progression with any exponent $\rho$ that has |
| + | absolute value greater than the absolute values of all the eigenvalues |
| + | of $P$ other than 1. |
| | | |
− | The absolute values of the eigenvalues of stochastic matrices do not exceed 1; 1 is an eigenvalue of any stochastic matrix. If a stochastic matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s0901507.png" /> is indecomposable (the Markov chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s0901508.png" /> has one class of positive states), then 1 is a simple eigenvalue of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s0901509.png" /> (i.e. it has multiplicity 1); in general, the multiplicity of the eigenvalue 1 coincides with the number of classes of positive states of the Markov chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015010.png" />. If a stochastic matrix is indecomposable and if the class of positive states of the Markov chain has period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015011.png" />, then the set of all eigenvalues of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015012.png" />, as a set of points in the complex plane, is mapped onto itself by rotation through an angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015013.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015014.png" />, the stochastic matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015015.png" /> and the Markov chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015016.png" /> are called aperiodic.
| + | If $P = [p_{ij}]$ is a stochastic matrix of order $n$, then any of its |
| + | eigenvalues $\lambda$ satisfies the inequality (see {{Cite|MM}}): |
| + | $$ |
| + | \left| \lambda - \omega \right| \leq 1-\omega, \quad |
| + | \text{where $\omega = \min_{1 \leq i \leq n} p_{ii}.$} |
| + | $$ |
| + | The union $M_n$ of the sets of eigenvalues of all stochastic matrices of |
| + | order $n$ has been described (see {{Cite|Ka}}). |
| | | |
− | The left eigenvectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015018.png" /> of finite order, corresponding to the eigenvalue <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015019.png" />:
| + | A stochastic matrix $P=[p_{ij}]$ that satisfies the extra condition |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015020.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | \sum_i p_{ij} = 1 \quad \text{for all $j$} |
− | | + | $$ |
− | and satisfying the conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015022.png" />, define the stationary distributions of the Markov chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015023.png" />; in the case of an indecomposable matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015024.png" />, the stationary distribution is unique.
| + | is called a doubly-stochastic matrix. The set of doubly-stochastic |
− | | + | matrices of order $n$ is the convex hull of the set of $n!$ permutation |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015025.png" /> is an indecomposable aperiodic stochastic matrix of finite order, then the following limit exists:
| + | matrices of order $n$ (i.e. doubly-stochastic matrices consisting of |
− | | + | zeros and ones). A finite Markov chain $\xi^P(t)$ with a doubly-stochastic |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015026.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | matrix $P$ has the uniform stationary distribution. |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015027.png" /> is the matrix all rows of which coincide with the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015028.png" /> (see also [[Markov chain, ergodic|Markov chain, ergodic]]; for infinite stochastic matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015029.png" />, the system of equations (1) may have no non-zero non-negative solutions that satisfy the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015030.png" />; in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015031.png" /> is the zero matrix). The rate of convergence in (2) can be estimated by a geometric progression with any exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015032.png" /> that has absolute value greater than the absolute values of all the eigenvalues of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015033.png" /> other than 1.
| |
− | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015034.png" /> is a stochastic matrix of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015035.png" />, then any of its eigenvalues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015036.png" /> satisfies the inequality (see [[#References|[3]]]):
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015037.png" /></td> </tr></table>
| |
− | | |
− | The union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015038.png" /> of the sets of eigenvalues of all stochastic matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015039.png" /> has been described (see [[#References|[4]]]).
| |
− | | |
− | A stochastic matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015040.png" /> that satisfies the extra condition
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015041.png" /></td> </tr></table>
| |
− | | |
− | is called a doubly-stochastic matrix. The set of doubly-stochastic matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015042.png" /> is the convex hull of the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015043.png" /> permutation matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015044.png" /> (i.e. doubly-stochastic matrices consisting of zeros and ones). A finite Markov chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015045.png" /> with a doubly-stochastic matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015046.png" /> has the uniform stationary distribution. | |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''1''' , Chelsea, reprint (1977) (Translated from Russian) {{MR|1657129}} {{MR|0107649}} {{MR|0107648}} {{ZBL|0927.15002}} {{ZBL|0927.15001}} {{ZBL|0085.01001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Bellman, "Introduction to matrix analysis" , McGraw-Hill (1960) {{MR|0122820}} {{ZBL|0124.01001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Marcus, H. Minc, "A survey of matrix theory and matrix inequalities" , Allyn & Bacon (1964) {{MR|0162808}} {{ZBL|0126.02404}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F.I. Karpelevich, "On the characteristic roots of matrices with non-negative entries" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''15''' (1951) pp. 361–383 (In Russian)</TD></TR></table>
| + | {| |
− | | + | |valign="top"|{{Ref|G}}|| F.R. Gantmacher, "The theory of matrices" , '''1''' , Chelsea, reprint (1977) (Translated from Russian) {{MR|1657129}} {{MR|0107649}} {{MR|0107648}} {{ZBL|0927.15002}} {{ZBL|0927.15001}} {{ZBL|0085.01001}} |
− | | + | |- |
| + | |valign="top"|{{Ref|B}}|| R. Bellman, "Introduction to matrix analysis" , McGraw-Hill (1960) {{MR|0122820}} {{ZBL|0124.01001}} |
| + | |- |
| + | |valign="top"|{{Ref|MM}}|| M. Marcus, H. Minc, "A survey of matrix theory and matrix inequalities" , Allyn & Bacon (1964) {{MR|0162808}} {{ZBL|0126.02404}} |
| + | |- |
| + | |valign="top"|{{Ref|Ka}}|| F.I. Karpelevich, "On the characteristic roots of matrices with non-negative entries" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''15''' (1951) pp. 361–383 (In Russian) |
| + | |} |
| | | |
| ====Comments==== | | ====Comments==== |
− | Given a real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015047.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015048.png" /> with non-negative entries, the question arises whether there are invertible positive diagonal matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015050.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015051.png" /> is a doubly-stochastic matrix, and to what extent the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015053.png" /> are unique. Such theorems are known as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015055.png" />-theorems. They are of interest in telecommunications and statistics, [[#References|[a3]]]–[[#References|[a5]]]. | + | Given a real $n\times n$ matrix $A$ with non-negative |
− | | + | entries, the question arises whether there are invertible positive |
− | A matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015056.png" /> is fully decomposable if there do not exist permutation matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015058.png" /> such that
| + | diagonal matrices $D_1$ and $D_2$ such that $D_1AD_2$ is a doubly-stochastic |
− | | + | matrix, and to what extent the $D_1$ and $D_2$ are unique. Such theorems |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015059.png" /></td> </tr></table>
| + | are known as $DAD$-theorems. They are of interest in telecommunications |
| + | and statistics, {{Cite|C}}, {{Cite|F}}, {{Cite|Kr}}. |
| | | |
− | A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015060.png" />-matrix is fully indecomposable if it is non-zero. | + | A matrix $A$ is fully decomposable if there do not exist permutation |
| + | matrices $P$ and $Q$ such that |
| + | $$ |
| + | PAQ = |
| + | \left[ |
| + | \begin{array}{cc} |
| + | A_1 & 0 \\ |
| + | B & A_2 |
| + | \end{array} |
| + | \right]. |
| + | $$ |
| + | A $1 \times 1$ matrix is fully indecomposable if it is non-zero. |
| | | |
− | Then for a non-negative square matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015061.png" /> there exist positive diagonal matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015062.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015063.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015064.png" /> is doubly stochastic if and only if there exist permutation matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015066.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015067.png" /> is a direct sum of fully indecomposable matrices [[#References|[a1]]], [[#References|[a2]]]. | + | Then for a non-negative square matrix $A$ there exist positive |
| + | diagonal matrices $D_1$ and $D_2$ such that $D_1AD_2$ is doubly stochastic if |
| + | and only if there exist permutation matrices $P$ and $Q$ such that $PAQ$ |
| + | is a direct sum of fully indecomposable matrices {{Cite|SK}}, |
| + | {{Cite|BPS}}. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Sinkhorn, P. Knopp, "Concerning nonnegative matrices and doubly stochastic matrices" ''Pacific J. Math.'' , '''21''' (1967) pp. 343–348 {{MR|0210731}} {{ZBL|0152.01403}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.A. Brualdi, S.V. Parter, H. Schneider, "The diagonal equivalence of a nonnegative matrix to a stochastic matrix" ''J. Math. Anal. Appl.'' , '''16''' (1966) pp. 31–50 {{MR|0206019}} {{ZBL|0231.15017}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Fienberg, "An iterative procedure for estimation in contingency tables" ''Ann. Math. Stat.'' , '''41''' (1970) pp. 907–917 {{MR|0266394}} {{ZBL|0198.23401}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.S. Krupp, "Properties of Kruithof's projection method" ''Bell Systems Techn. J.'' , '''58''' (1979) pp. 517–538</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> I. Csiszár, "I-divergence geometry of probability distributions and minimization problems" ''Ann. Probab.'' , '''3''' (1975) pp. 146–158 {{MR|0365798}} {{ZBL|0318.60013}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> R.D. Nussbaum, "Iterated nonlinear maps and Hilbert's projective method II" ''Memoirs Amer. Math. Soc.'' , '''401''' (1989)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> M.F. Neuts, "Structured stochastic matrices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015068.png" /> type and their applications" , M. Dekker (1989) {{MR|1010040}} {{ZBL|0695.60088}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> E. Seneta, "Non-negative matrices and Markov chains" , Springer (1981) {{MR|2209438}} {{ZBL|0471.60001}} </TD></TR></table>
| + | {| |
| + | |valign="top"|{{Ref|SK}}|| R. Sinkhorn, P. Knopp, "Concerning nonnegative matrices and doubly stochastic matrices" ''Pacific J. Math.'' , '''21''' (1967) pp. 343–348 {{MR|0210731}} {{ZBL|0152.01403}} |
| + | |- |
| + | |valign="top"|{{Ref|BPS}}|| R.A. Brualdi, S.V. Parter, H. Schneider, "The diagonal equivalence of a nonnegative matrix to a stochastic matrix" ''J. Math. Anal. Appl.'' , '''16''' (1966) pp. 31–50 {{MR|0206019}} {{ZBL|0231.15017}} |
| + | |- |
| + | |valign="top"|{{Ref|F}}|| S. Fienberg, "An iterative procedure for estimation in contingency tables" ''Ann. Math. Stat.'' , '''41''' (1970) pp. 907–917 {{MR|0266394}} {{ZBL|0198.23401}} |
| + | |- |
| + | |valign="top"|{{Ref|Kr}}|| R.S. Krupp, "Properties of Kruithof's projection method" ''Bell Systems Techn. J.'' , '''58''' (1979) pp. 517–538 |
| + | |- |
| + | |valign="top"|{{Ref|C}}|| I. Csiszár, "I-divergence geometry of probability distributions and minimization problems" ''Ann. Probab.'' , '''3''' (1975) pp. 146–158 {{MR|0365798}} {{ZBL|0318.60013}} |
| + | |- |
| + | |valign="top"|{{Ref|Nu}}|| R.D. Nussbaum, "Iterated nonlinear maps and Hilbert's projective method II" ''Memoirs Amer. Math. Soc.'' , '''401''' (1989) |
| + | |- |
| + | |valign="top"|{{Ref|Ne}}|| M.F. Neuts, "Structured stochastic matrices of M/G/1 type and their applications" , M. Dekker (1989) {{MR|1010040}} {{ZBL|0695.60088}} |
| + | |- |
| + | |valign="top"|{{Ref|S}}|| E. Seneta, "Non-negative matrices and Markov chains" , Springer (1981) {{MR|2209438}} {{ZBL|0471.60001}} |
| + | |} |
2020 Mathematics Subject Classification: Primary: 15B51 Secondary: 60J10 [MSN][ZBL]
A stochastic matrix is a square (possibly infinite) matrix
$P=[p_{ij}]$ with non-negative elements, for which
$$
\sum_j p_{ij} = 1 \quad \text{for all $i$.}
$$
The set of all stochastic matrices of
order $n$ is the convex hull of the set of $n^n$ stochastic matrices
consisting of zeros and ones. Any stochastic matrix $P$ can be
considered as the
matrix of transition
probabilities of a discrete
Markov chain $\xi^P(t)$.
The absolute values of the eigenvalues of stochastic matrices do not
exceed 1; 1 is an eigenvalue of any stochastic matrix. If a stochastic
matrix $P$ is indecomposable (the Markov chain $\xi^P(t)$ has one
class of positive states), then 1 is a simple eigenvalue of $P$
(i.e. it has multiplicity 1); in general, the multiplicity of the
eigenvalue 1 coincides with the number of classes of positive states
of the Markov chain $\xi^P(t)$. If a stochastic matrix is
indecomposable and if the class of positive states of the Markov chain
has period $d$, then the set of all eigenvalues of $P$, as a set of
points in the complex plane, is mapped onto itself by rotation through
an angle $2\pi/d$. When $d=1$, the stochastic matrix $P$ and the
Markov chain $\xi^P(t)$ are called aperiodic.
The left eigenvectors $\pi = \{\pi_j\}$ of $P$ of finite order,
corresponding to the eigenvalue 1:
\begin{equation}
\label{eq1}
\pi_j = \sum_i \pi_i p_{ij}
\quad \text{for all}\ j\,,
\end{equation}
and satisfying the conditions $\pi_j \geq
0$, $\sum_j\pi_j = 1$, define the stationary distributions of the
Markov chain $\xi^P(t)$; in the case of an indecomposable matrix $P$,
the stationary distribution is unique.
If $P$ is an indecomposable aperiodic stochastic matrix of finite
order, then the following limit exists:
\begin{equation}
\label{eq2}
\lim_{n\rightarrow\infty} P^n = \Pi,
\end{equation}
where $\Pi$ is the matrix
all rows of which coincide with the vector $\pi$ (see also
Markov chain, ergodic; for infinite
stochastic matrices $P$, the system of equations \ref{eq1} may have no
non-zero non-negative solutions that satisfy the condition
$\sum_j \pi_j < \infty$; in
this case $\Pi$ is the zero matrix). The rate of convergence in \ref{eq2} can
be estimated by a geometric progression with any exponent $\rho$ that has
absolute value greater than the absolute values of all the eigenvalues
of $P$ other than 1.
If $P = [p_{ij}]$ is a stochastic matrix of order $n$, then any of its
eigenvalues $\lambda$ satisfies the inequality (see [MM]):
$$
\left| \lambda - \omega \right| \leq 1-\omega, \quad
\text{where $\omega = \min_{1 \leq i \leq n} p_{ii}.$}
$$
The union $M_n$ of the sets of eigenvalues of all stochastic matrices of
order $n$ has been described (see [Ka]).
A stochastic matrix $P=[p_{ij}]$ that satisfies the extra condition
$$
\sum_i p_{ij} = 1 \quad \text{for all $j$}
$$
is called a doubly-stochastic matrix. The set of doubly-stochastic
matrices of order $n$ is the convex hull of the set of $n!$ permutation
matrices of order $n$ (i.e. doubly-stochastic matrices consisting of
zeros and ones). A finite Markov chain $\xi^P(t)$ with a doubly-stochastic
matrix $P$ has the uniform stationary distribution.
References
[G] |
F.R. Gantmacher, "The theory of matrices" , 1 , Chelsea, reprint (1977) (Translated from Russian) MR1657129 MR0107649 MR0107648 Zbl 0927.15002 Zbl 0927.15001 Zbl 0085.01001
|
[B] |
R. Bellman, "Introduction to matrix analysis" , McGraw-Hill (1960) MR0122820 Zbl 0124.01001
|
[MM] |
M. Marcus, H. Minc, "A survey of matrix theory and matrix inequalities" , Allyn & Bacon (1964) MR0162808 Zbl 0126.02404
|
[Ka] |
F.I. Karpelevich, "On the characteristic roots of matrices with non-negative entries" Izv. Akad. Nauk SSSR Ser. Mat. , 15 (1951) pp. 361–383 (In Russian)
|
Given a real $n\times n$ matrix $A$ with non-negative
entries, the question arises whether there are invertible positive
diagonal matrices $D_1$ and $D_2$ such that $D_1AD_2$ is a doubly-stochastic
matrix, and to what extent the $D_1$ and $D_2$ are unique. Such theorems
are known as $DAD$-theorems. They are of interest in telecommunications
and statistics, [C], [F], [Kr].
A matrix $A$ is fully decomposable if there do not exist permutation
matrices $P$ and $Q$ such that
$$
PAQ =
\left[
\begin{array}{cc}
A_1 & 0 \\
B & A_2
\end{array}
\right].
$$
A $1 \times 1$ matrix is fully indecomposable if it is non-zero.
Then for a non-negative square matrix $A$ there exist positive
diagonal matrices $D_1$ and $D_2$ such that $D_1AD_2$ is doubly stochastic if
and only if there exist permutation matrices $P$ and $Q$ such that $PAQ$
is a direct sum of fully indecomposable matrices [SK],
[BPS].
References
[SK] |
R. Sinkhorn, P. Knopp, "Concerning nonnegative matrices and doubly stochastic matrices" Pacific J. Math. , 21 (1967) pp. 343–348 MR0210731 Zbl 0152.01403
|
[BPS] |
R.A. Brualdi, S.V. Parter, H. Schneider, "The diagonal equivalence of a nonnegative matrix to a stochastic matrix" J. Math. Anal. Appl. , 16 (1966) pp. 31–50 MR0206019 Zbl 0231.15017
|
[F] |
S. Fienberg, "An iterative procedure for estimation in contingency tables" Ann. Math. Stat. , 41 (1970) pp. 907–917 MR0266394 Zbl 0198.23401
|
[Kr] |
R.S. Krupp, "Properties of Kruithof's projection method" Bell Systems Techn. J. , 58 (1979) pp. 517–538
|
[C] |
I. Csiszár, "I-divergence geometry of probability distributions and minimization problems" Ann. Probab. , 3 (1975) pp. 146–158 MR0365798 Zbl 0318.60013
|
[Nu] |
R.D. Nussbaum, "Iterated nonlinear maps and Hilbert's projective method II" Memoirs Amer. Math. Soc. , 401 (1989)
|
[Ne] |
M.F. Neuts, "Structured stochastic matrices of M/G/1 type and their applications" , M. Dekker (1989) MR1010040 Zbl 0695.60088
|
[S] |
E. Seneta, "Non-negative matrices and Markov chains" , Springer (1981) MR2209438 Zbl 0471.60001
|