Namespaces
Variants
Actions

Difference between revisions of "Stochastic differential equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(MSC|60H10 Category:Stochastic analysis)
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
''for a process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s0900801.png" /> with respect to a [[Wiener process|Wiener process]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s0900802.png" />''
+
<!--
 +
s0900801.png
 +
$#A+1 = 85 n = 0
 +
$#C+1 = 85 : ~/encyclopedia/old_files/data/S090/S.0900080 Stochastic differential equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
''for a process  $  X=( X _ {t} ) _ {t\geq } 0 $
 +
with respect to a [[Wiener process|Wiener process]] $  W = ( W _ {t} ) _ {t\geq } 0 $''
  
 
{{MSC|60H10}}
 
{{MSC|60H10}}
Line 7: Line 20:
 
An equation of the form
 
An equation of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s0900803.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
dX _ {t}  = a( t, X)  dt + b( t, X)  dW _ {t} ,\  X _ {0= \xi ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s0900804.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s0900805.png" /> are non-anticipative functionals, and the random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s0900806.png" /> plays the part of the initial value. There are two separate concepts for a solution of a stochastic differential equation — strong and weak.
+
where $  a( t, X) $
 +
and $  b( t, X) $
 +
are non-anticipative functionals, and the random variable $  \xi $
 +
plays the part of the initial value. There are two separate concepts for a solution of a stochastic differential equation — strong and weak.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s0900807.png" /> be a probability space with an increasing family of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s0900808.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s0900809.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008010.png" /> be a Wiener process. One says that a continuous stochastic process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008011.png" /> is a strong solution of the stochastic differential equation (1) with drift coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008012.png" />, diffusion coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008013.png" /> and initial value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008014.png" />, if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008015.png" /> with probability one:
+
Let $  ( \Omega , {\mathcal F} , {\mathsf P}) $
 +
be a probability space with an increasing family of $  \sigma $-
 +
algebras $  \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $,  
 +
and let $  W = ( W _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $
 +
be a Wiener process. One says that a continuous stochastic process $  X = ( X _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $
 +
is a strong solution of the stochastic differential equation (1) with drift coefficient $  a( t, X) $,  
 +
diffusion coefficient $  b( t, X) $
 +
and initial value $  \xi $,  
 +
if for every $  t > 0 $
 +
with probability one:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
X _ {t}  = \xi + \int\limits _ { 0 } ^ { t }  a( s, X)  ds + \int\limits _ { 0 } ^ { t }  b( s, X) dW _ {s} ,
 +
$$
  
 
where it is supposed that the integrals in (2) are defined.
 
where it is supposed that the integrals in (2) are defined.
Line 19: Line 48:
 
The first general result on the existence and uniqueness of a strong solution of a stochastic differential equation of the form
 
The first general result on the existence and uniqueness of a strong solution of a stochastic differential equation of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
dX _ {t}  = a( t, X _ {t} )  dt + b( t, X _ {t} ) dW _ {t}  $$
  
was obtained by K. Itô. He demonstrated that if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008018.png" /> the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008020.png" /> satisfy a Lipschitz condition with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008021.png" /> and increase not faster than linearly, then a continuous solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008022.png" /> of the equation (3) exists, and this solution is unique in the sense that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008023.png" /> is another continuous solution, then
+
was obtained by K. Itô. He demonstrated that if for every $  t > 0 $
 +
the functions $  a( t, x) $
 +
and $  b( t, x) $
 +
satisfy a Lipschitz condition with respect to $  x $
 +
and increase not faster than linearly, then a continuous solution $  X = ( X _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $
 +
of the equation (3) exists, and this solution is unique in the sense that if $  Y = ( Y _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $
 +
is another continuous solution, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008024.png" /></td> </tr></table>
+
$$
 +
{\mathsf P} \left \{ \sup _ { s\leq  } t  | X _ {s} - Y _ {s} | > 0
 +
\right \}  = 0,\  t \geq  0.
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008025.png" />, the measurability and boundedness of the drift coefficient (vector) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008026.png" /> guarantees the existence and uniqueness of a strong solution of (3). The equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008027.png" />, generally speaking, does not have a strong solution for any bounded non-anticipative functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008028.png" />.
+
If $  b( t, x) \equiv \textrm{ const } $,  
 +
the measurability and boundedness of the drift coefficient (vector) $  a( t, x) $
 +
guarantees the existence and uniqueness of a strong solution of (3). The equation $  dX _ {t} = a( t, X)  dt+  dW _ {t} $,  
 +
generally speaking, does not have a strong solution for any bounded non-anticipative functional $  a( t, X) $.
  
When studying the concept of a weak solution of the stochastic differential equation (1), the probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008029.png" /> with the family of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008030.png" />-algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008031.png" />, the Wiener process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008032.png" /> and the random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008033.png" /> are not fixed in advance, but the non-anticipative functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008035.png" />, defined for continuous functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008036.png" />, and the distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008037.png" /> (so to speak, the initial value) are fixed. Then by a weak solution of the equation (1) with given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008040.png" /> one understands a set of objects
+
When studying the concept of a weak solution of the stochastic differential equation (1), the probability space $  ( \Omega , {\mathcal F} , {\mathsf P}) $
 +
with the family of $  \sigma $-
 +
algebras $  \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $,  
 +
the Wiener process $  W = ( W _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $
 +
and the random variable $  \xi $
 +
are not fixed in advance, but the non-anticipative functionals $  a( t, X) $,
 +
$  b( t, X) $,  
 +
defined for continuous functions $  X = ( X _ {t} ) _ {t\geq } 0 $,  
 +
and the distribution function $  F( x) $(
 +
so to speak, the initial value) are fixed. Then by a weak solution of the equation (1) with given $  a( t, X) $,
 +
$  b( t, X) $
 +
and $  F( x) $
 +
one understands a set of objects
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008041.png" /></td> </tr></table>
+
$$
 +
\widetilde {\mathcal A}    = ( \widetilde \Omega  , \widetilde {\mathcal F}  , ( \widetilde {\mathcal F}  _ {t} ) _ {t\geq } 0 ,\ \
 +
\widetilde{W}  = ( \widetilde{W}  _ {t} ) _ {t\geq } 0 ,\ \
 +
\widetilde{X}  = ( \widetilde{X}  _ {t} ) _ {t\geq } 0 , {\mathsf P} ),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008042.png" /> is a Wiener process relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008043.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008045.png" /> are related by
+
where $  \widetilde{W}  = ( \widetilde{W}  {} _ {t} ) _ {t\geq } 0 $
 +
is a Wiener process relative to $  (( {\mathcal F} _ {t} ) _ {t\geq } 0 , {\mathsf P}) $,
 +
and $  \widetilde{W}  $
 +
and $  \widetilde{X}  $
 +
are related by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008046.png" /></td> </tr></table>
+
$$
 +
\widetilde{X}  _ {t}  = \widetilde{X}  _ {0} + \int\limits _ { 0 } ^ { t }  a( s, \widetilde{X}  )  ds + \int\limits _ { 0 } ^ { t }  b( s, \widetilde{X}  )  d \widetilde{W}  _ {s} ,
 +
$$
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008047.png" />. The term "weak solution" sometimes applies only to the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008048.png" /> that appears in the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008049.png" />. A weak solution of equation (3) exists under weaker hypotheses. It is sufficient, for example, that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008050.png" />, and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008051.png" /> be continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008052.png" />, that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008053.png" /> be measurable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008054.png" />, and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008055.png" />.
+
and $  \widetilde {\mathsf P}  \{ \widetilde{X}  _ {0} \leq  x \} = F( x) $.  
 +
The term "weak solution" sometimes applies only to the process $  \widetilde{X}  $
 +
that appears in the set $  \widetilde {\mathcal A}  $.  
 +
A weak solution of equation (3) exists under weaker hypotheses. It is sufficient, for example, that $  b  ^ {2} ( t, x) \geq  c > 0 $,  
 +
and that $  b  ^ {2} ( t, x) $
 +
be continuous in $  ( t, x) $,  
 +
that $  a( t, x) $
 +
be measurable in $  ( t, x) $,  
 +
and that $  | a | + | b | \leq  \textrm{ const } $.
  
The development of the theory of stochastic integration (see [[Stochastic integral|Stochastic integral]]) using semi-martingales (cf. [[Semi-martingale|Semi-martingale]]) and random measures has led to the study of more general stochastic differential equations, where semi-martingales and random measures are used as generators (along with a Wiener process). The following result is typical. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008056.png" /> be a probability space, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008057.png" /> be an increasing family of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008058.png" />-algebras, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008059.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008060.png" />-dimensional semi-martingale, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008061.png" /> be a matrix consisting of non-anticipative functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008062.png" /> such that
+
The development of the theory of stochastic integration (see [[Stochastic integral|Stochastic integral]]) using semi-martingales (cf. [[Semi-martingale|Semi-martingale]]) and random measures has led to the study of more general stochastic differential equations, where semi-martingales and random measures are used as generators (along with a Wiener process). The following result is typical. Let $  ( \Omega , {\mathcal F} , {\mathsf P}) $
 +
be a probability space, let $  \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $
 +
be an increasing family of $  \sigma $-
 +
algebras, let $  Z = ( Z _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $
 +
be an $  m $-
 +
dimensional semi-martingale, and let $  G( t, X) = \| g  ^ {ij} ( t, X) \| _ {ij} $
 +
be a matrix consisting of non-anticipative functionals $  g  ^ {ij} ( t, X) $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008063.png" /></td> </tr></table>
+
$$
 +
| g  ^ {ij} ( t, X) - g  ^ {ij} ( t, Y) |  \leq  L _ {t}  ^ {ij}  \sup _ { s\leq  } t  | X _ {s} - Y _ {s} | ,
 +
$$
  
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008064.png" /> do not increase too rapidly (in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008065.png" />). Then the stochastic differential equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008067.png" />, has a unique strong solution.
+
where the $  L _ {t}  ^ {ij} $
 +
do not increase too rapidly (in $  t $).  
 +
Then the stochastic differential equation $  dX _ {t} = G( t, X)  dZ _ {t} $,
 +
$  X _ {0} = 0 $,  
 +
has a unique strong solution.
  
If the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008070.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008071.png" />, satisfy a Lipschitz condition (in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008072.png" />) and do not increase faster than linearly, then the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008073.png" /> of equation (3) (unique up to [[Stochastic equivalence|stochastic equivalence]]) will be a Markov process. If, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008074.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008075.png" /> are continuous in all variables, then this will be a diffusion process. Using stochastic differential equations, starting only from a Wiener process, it is thus possible to construct Markov and diffusion processes.
+
If the functions $  a( t, x) $
 +
and $  b( t, x) $,  
 +
$  t \geq  0 $,  
 +
$  x \in \mathbf R $,  
 +
satisfy a Lipschitz condition (in $  x $)  
 +
and do not increase faster than linearly, then the solution $  X = ( X _ {t} ) _ {t\geq } 0 $
 +
of equation (3) (unique up to [[Stochastic equivalence|stochastic equivalence]]) will be a Markov process. If, moreover, $  a( t, x) $
 +
and $  b( t, x) $
 +
are continuous in all variables, then this will be a diffusion process. Using stochastic differential equations, starting only from a Wiener process, it is thus possible to construct Markov and diffusion processes.
  
Given certain extra conditions of smoothness on the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008076.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008077.png" />, the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008078.png" /> of equation (3) with initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008079.png" /> is such that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008080.png" />, given a sufficiently smooth function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008081.png" />, satisfies the backward Kolmogorov equation
+
Given certain extra conditions of smoothness on the functions $  a( t, x) $
 +
and $  b( t, x) $,  
 +
the solution $  ( X _ {t}  ^ {x} ) _ {t\geq } 0 $
 +
of equation (3) with initial condition $  X _ {0}  ^ {x} = x $
 +
is such that the function $  u( s, x) = {\mathsf E} f( X _ {s}  ^ {x} ) $,  
 +
given a sufficiently smooth function $  f( x) $,  
 +
satisfies the backward Kolmogorov equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008082.png" /></td> </tr></table>
+
$$
  
in the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008083.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008084.png" />, with the boundary condition
+
\frac{\partial  u( s, x) }{\partial  s }
 +
+ a( s, x)
 +
\frac{\partial  u( s, x) }{\partial  x }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008085.png" /></td> </tr></table>
+
+
 +
\frac{b  ^ {2} ( s, x) }{2}
 +
 +
\frac{\partial  ^ {2} u ( s, x) }{\partial  x  ^ {2} }
 +
  = \
 +
0,
 +
$$
  
====References====
+
in the domain  $  s \in ( 0, t) $,  
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.I. Gikhman, A.V. Skorokhod, "Stochastic differential equations and their applications" , Springer (1972) (Translated from Russian) {{MR|0678374}} {{ZBL|0557.60041}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.S. Liptser, A.N. Shiryaev, "Statistics of random processes" , '''1–2''' , Springer (1977–1978) (Translated from Russian) {{MR|1800858}} {{MR|1800857}} {{MR|0608221}} {{MR|0488267}} {{MR|0474486}} {{ZBL|1008.62073}} {{ZBL|1008.62072}} {{ZBL|0556.60003}} {{ZBL|0369.60001}} {{ZBL|0364.60004}} </TD></TR></table>
+
$  x \in \mathbf R $,  
 +
with the boundary condition
  
 +
$$
 +
\lim\limits _ { s\downarrow } t  u( s, x)  =  f( x).
 +
$$
  
 +
====References====
 +
{|
 +
|valign="top"|{{Ref|GS}}|| I.I. Gikhman, A.V. Skorokhod, "Stochastic differential equations and their applications" , Springer (1972) (Translated from Russian) {{MR|0678374}} {{ZBL|0557.60041}}
 +
|-
 +
|valign="top"|{{Ref|LS}}|| R.S. Liptser, A.N. Shiryaev, "Statistics of random processes" , '''1–2''' , Springer (1977–1978) (Translated from Russian) {{MR|1800858}} {{MR|1800857}} {{MR|0608221}} {{MR|0488267}} {{MR|0474486}} {{ZBL|1008.62073}} {{ZBL|1008.62072}} {{ZBL|0556.60003}} {{ZBL|0369.60001}} {{ZBL|0364.60004}}
 +
|}
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Arnold, "Stochastic differential equations" , Wiley (1974) (Translated from Russian) {{MR|0443083}} {{ZBL|0278.60039}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Bunke, "Gewöhnliche Differentialgleichungen mit zufällige Parametern" , Akademie Verlag (1972) {{MR|423523}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Freedman, "Stochastic differential equations and applications" , '''1''' , Acad. Press (1975)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.Z. [R.Z. Khasmins'kii] Hasminski, "Stochastic stability of differential equations" , Sijthoff &amp; Noordhoff (1980) (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> N. Ikeda, S. Watanabe, "Stochastic differential equations and diffusion processes" , North-Holland &amp; Kodansha (1981) {{MR|0637061}} {{ZBL|0495.60005}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> T.T. Soong, "Random differential equations in science and engineering" , Acad. Press (1973) {{MR|0451405}} {{ZBL|0348.60081}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> S.K. Srinivasan, R. Vasudevan, "Introduction to random differential equations and their applications" , Amer. Elsevier (1971) {{MR|0329025}} {{ZBL|0242.60002}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> R.L. Stratonovich, "Topics in the theory of random noise" , '''1–2''' , Gordon &amp; Breach (1963–1967) {{MR|0158437}} {{ZBL|0183.22007}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> D.W. Stroock, S.R.S. Varadhan, "Multidimensional diffusion processes" , Springer (1979) {{MR|0532498}} {{ZBL|0426.60069}} </TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> Th. Gard, "Introduction to stochastic differential equations" , M. Dekker (1988) {{MR|0917064}} {{ZBL|0628.60064}} </TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> B. Øksendahl, "Stochastic differential equations" , Springer (1987)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> P. Protter, "Stochastic integration and differential equations" , Springer (1990) {{MR|1037262}} {{ZBL|0694.60047}} </TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> S. Albeverio, M. Röckner, "Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms" ''Probab. Th. Rel. Fields'' , '''89''' (1991) pp. 347–386 {{MR|1113223}} {{ZBL|0725.60055}} </TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> K.D. Elworthy, "Stochastic differential equations on manifolds" , Cambridge Univ. Press (1982) {{MR|0675100}} {{ZBL|0514.58001}} </TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> M. Emery, "Stochastic calculus in manifolds" , Springer (1989) ((Appendix by P.A. Meyer.)) {{MR|1030543}} {{ZBL|0697.60060}} </TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> K. Sobczyk, "Stochastic differential equations. With applications to physics and engineering" , Kluwer (1991) {{MR|1135326}} {{ZBL|0762.60050}} </TD></TR></table>
+
{|
 +
|valign="top"|{{Ref|A}}|| L. Arnold, "Stochastic differential equations" , Wiley (1974) (Translated from Russian) {{MR|0443083}} {{ZBL|0278.60039}}
 +
|-
 +
|valign="top"|{{Ref|B}}|| H. Bunke, "Gewöhnliche Differentialgleichungen mit zufällige Parametern" , Akademie Verlag (1972) {{MR|423523}} {{ZBL|}}
 +
|-
 +
|valign="top"|{{Ref|F}}|| A. Freedman, "Stochastic differential equations and applications" , '''1''' , Acad. Press (1975)
 +
|-
 +
|valign="top"|{{Ref|H}}|| R.Z. Hasminski, "Stochastic stability of differential equations" , Sijthoff &amp; Noordhoff (1980) (Translated from Russian)
 +
|-
 +
|valign="top"|{{Ref|IW}}|| N. Ikeda, S. Watanabe, "Stochastic differential equations and diffusion processes" , North-Holland &amp; Kodansha (1981) {{MR|0637061}} {{ZBL|0495.60005}}
 +
|-
 +
|valign="top"|{{Ref|So}}|| T.T. Soong, "Random differential equations in science and engineering" , Acad. Press (1973) {{MR|0451405}} {{ZBL|0348.60081}}
 +
|-
 +
|valign="top"|{{Ref|SrVs}}|| S.K. Srinivasan, R. Vasudevan, "Introduction to random differential equations and their applications" , Amer. Elsevier (1971) {{MR|0329025}} {{ZBL|0242.60002}}
 +
|-
 +
|valign="top"|{{Ref|St}}|| R.L. Stratonovich, "Topics in the theory of random noise" , '''1–2''' , Gordon &amp; Breach (1963–1967) {{MR|0158437}} {{ZBL|0183.22007}}
 +
|-
 +
|valign="top"|{{Ref|StVa}}|| D.W. Stroock, S.R.S. Varadhan, "Multidimensional diffusion processes" , Springer (1979) {{MR|0532498}} {{ZBL|0426.60069}}
 +
|-
 +
|valign="top"|{{Ref|G}}|| Th. Gard, "Introduction to stochastic differential equations" , M. Dekker (1988) {{MR|0917064}} {{ZBL|0628.60064}}
 +
|-
 +
|valign="top"|{{Ref|Ø}}|| B. Øksendahl, "Stochastic differential equations" , Springer (1987)
 +
|-
 +
|valign="top"|{{Ref|P}}|| P. Protter, "Stochastic integration and differential equations" , Springer (1990) {{MR|1037262}} {{ZBL|0694.60047}}
 +
|-
 +
|valign="top"|{{Ref|AR}}|| S. Albeverio, M. Röckner, "Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms" ''Probab. Th. Rel. Fields'' , '''89''' (1991) pp. 347–386 {{MR|1113223}} {{ZBL|0725.60055}}
 +
|-
 +
|valign="top"|{{Ref|El}}|| K.D. Elworthy, "Stochastic differential equations on manifolds" , Cambridge Univ. Press (1982) {{MR|0675100}} {{ZBL|0514.58001}}
 +
|-
 +
|valign="top"|{{Ref|Em}}|| M. Emery, "Stochastic calculus in manifolds" , Springer (1989) ((Appendix by P.A. Meyer.)) {{MR|1030543}} {{ZBL|0697.60060}}
 +
|-
 +
|valign="top"|{{Ref|Sob}}|| K. Sobczyk, "Stochastic differential equations. With applications to physics and engineering" , Kluwer (1991) {{MR|1135326}} {{ZBL|0762.60050}}
 +
|}

Latest revision as of 08:23, 6 June 2020


for a process $ X=( X _ {t} ) _ {t\geq } 0 $ with respect to a Wiener process $ W = ( W _ {t} ) _ {t\geq } 0 $

2020 Mathematics Subject Classification: Primary: 60H10 [MSN][ZBL]

An equation of the form

$$ \tag{1 } dX _ {t} = a( t, X) dt + b( t, X) dW _ {t} ,\ X _ {0} = \xi , $$

where $ a( t, X) $ and $ b( t, X) $ are non-anticipative functionals, and the random variable $ \xi $ plays the part of the initial value. There are two separate concepts for a solution of a stochastic differential equation — strong and weak.

Let $ ( \Omega , {\mathcal F} , {\mathsf P}) $ be a probability space with an increasing family of $ \sigma $- algebras $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $, and let $ W = ( W _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ be a Wiener process. One says that a continuous stochastic process $ X = ( X _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ is a strong solution of the stochastic differential equation (1) with drift coefficient $ a( t, X) $, diffusion coefficient $ b( t, X) $ and initial value $ \xi $, if for every $ t > 0 $ with probability one:

$$ \tag{2 } X _ {t} = \xi + \int\limits _ { 0 } ^ { t } a( s, X) ds + \int\limits _ { 0 } ^ { t } b( s, X) dW _ {s} , $$

where it is supposed that the integrals in (2) are defined.

The first general result on the existence and uniqueness of a strong solution of a stochastic differential equation of the form

$$ \tag{3 } dX _ {t} = a( t, X _ {t} ) dt + b( t, X _ {t} ) dW _ {t} $$

was obtained by K. Itô. He demonstrated that if for every $ t > 0 $ the functions $ a( t, x) $ and $ b( t, x) $ satisfy a Lipschitz condition with respect to $ x $ and increase not faster than linearly, then a continuous solution $ X = ( X _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ of the equation (3) exists, and this solution is unique in the sense that if $ Y = ( Y _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ is another continuous solution, then

$$ {\mathsf P} \left \{ \sup _ { s\leq } t | X _ {s} - Y _ {s} | > 0 \right \} = 0,\ t \geq 0. $$

If $ b( t, x) \equiv \textrm{ const } $, the measurability and boundedness of the drift coefficient (vector) $ a( t, x) $ guarantees the existence and uniqueness of a strong solution of (3). The equation $ dX _ {t} = a( t, X) dt+ dW _ {t} $, generally speaking, does not have a strong solution for any bounded non-anticipative functional $ a( t, X) $.

When studying the concept of a weak solution of the stochastic differential equation (1), the probability space $ ( \Omega , {\mathcal F} , {\mathsf P}) $ with the family of $ \sigma $- algebras $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $, the Wiener process $ W = ( W _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ and the random variable $ \xi $ are not fixed in advance, but the non-anticipative functionals $ a( t, X) $, $ b( t, X) $, defined for continuous functions $ X = ( X _ {t} ) _ {t\geq } 0 $, and the distribution function $ F( x) $( so to speak, the initial value) are fixed. Then by a weak solution of the equation (1) with given $ a( t, X) $, $ b( t, X) $ and $ F( x) $ one understands a set of objects

$$ \widetilde {\mathcal A} = ( \widetilde \Omega , \widetilde {\mathcal F} , ( \widetilde {\mathcal F} _ {t} ) _ {t\geq } 0 ,\ \ \widetilde{W} = ( \widetilde{W} _ {t} ) _ {t\geq } 0 ,\ \ \widetilde{X} = ( \widetilde{X} _ {t} ) _ {t\geq } 0 , {\mathsf P} ), $$

where $ \widetilde{W} = ( \widetilde{W} {} _ {t} ) _ {t\geq } 0 $ is a Wiener process relative to $ (( {\mathcal F} _ {t} ) _ {t\geq } 0 , {\mathsf P}) $, and $ \widetilde{W} $ and $ \widetilde{X} $ are related by

$$ \widetilde{X} _ {t} = \widetilde{X} _ {0} + \int\limits _ { 0 } ^ { t } a( s, \widetilde{X} ) ds + \int\limits _ { 0 } ^ { t } b( s, \widetilde{X} ) d \widetilde{W} _ {s} , $$

and $ \widetilde {\mathsf P} \{ \widetilde{X} _ {0} \leq x \} = F( x) $. The term "weak solution" sometimes applies only to the process $ \widetilde{X} $ that appears in the set $ \widetilde {\mathcal A} $. A weak solution of equation (3) exists under weaker hypotheses. It is sufficient, for example, that $ b ^ {2} ( t, x) \geq c > 0 $, and that $ b ^ {2} ( t, x) $ be continuous in $ ( t, x) $, that $ a( t, x) $ be measurable in $ ( t, x) $, and that $ | a | + | b | \leq \textrm{ const } $.

The development of the theory of stochastic integration (see Stochastic integral) using semi-martingales (cf. Semi-martingale) and random measures has led to the study of more general stochastic differential equations, where semi-martingales and random measures are used as generators (along with a Wiener process). The following result is typical. Let $ ( \Omega , {\mathcal F} , {\mathsf P}) $ be a probability space, let $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $ be an increasing family of $ \sigma $- algebras, let $ Z = ( Z _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ be an $ m $- dimensional semi-martingale, and let $ G( t, X) = \| g ^ {ij} ( t, X) \| _ {ij} $ be a matrix consisting of non-anticipative functionals $ g ^ {ij} ( t, X) $ such that

$$ | g ^ {ij} ( t, X) - g ^ {ij} ( t, Y) | \leq L _ {t} ^ {ij} \sup _ { s\leq } t | X _ {s} - Y _ {s} | , $$

where the $ L _ {t} ^ {ij} $ do not increase too rapidly (in $ t $). Then the stochastic differential equation $ dX _ {t} = G( t, X) dZ _ {t} $, $ X _ {0} = 0 $, has a unique strong solution.

If the functions $ a( t, x) $ and $ b( t, x) $, $ t \geq 0 $, $ x \in \mathbf R $, satisfy a Lipschitz condition (in $ x $) and do not increase faster than linearly, then the solution $ X = ( X _ {t} ) _ {t\geq } 0 $ of equation (3) (unique up to stochastic equivalence) will be a Markov process. If, moreover, $ a( t, x) $ and $ b( t, x) $ are continuous in all variables, then this will be a diffusion process. Using stochastic differential equations, starting only from a Wiener process, it is thus possible to construct Markov and diffusion processes.

Given certain extra conditions of smoothness on the functions $ a( t, x) $ and $ b( t, x) $, the solution $ ( X _ {t} ^ {x} ) _ {t\geq } 0 $ of equation (3) with initial condition $ X _ {0} ^ {x} = x $ is such that the function $ u( s, x) = {\mathsf E} f( X _ {s} ^ {x} ) $, given a sufficiently smooth function $ f( x) $, satisfies the backward Kolmogorov equation

$$ \frac{\partial u( s, x) }{\partial s } + a( s, x) \frac{\partial u( s, x) }{\partial x } + \frac{b ^ {2} ( s, x) }{2} \frac{\partial ^ {2} u ( s, x) }{\partial x ^ {2} } = \ 0, $$

in the domain $ s \in ( 0, t) $, $ x \in \mathbf R $, with the boundary condition

$$ \lim\limits _ { s\downarrow } t u( s, x) = f( x). $$

References

[GS] I.I. Gikhman, A.V. Skorokhod, "Stochastic differential equations and their applications" , Springer (1972) (Translated from Russian) MR0678374 Zbl 0557.60041
[LS] R.S. Liptser, A.N. Shiryaev, "Statistics of random processes" , 1–2 , Springer (1977–1978) (Translated from Russian) MR1800858 MR1800857 MR0608221 MR0488267 MR0474486 Zbl 1008.62073 Zbl 1008.62072 Zbl 0556.60003 Zbl 0369.60001 Zbl 0364.60004

Comments

References

[A] L. Arnold, "Stochastic differential equations" , Wiley (1974) (Translated from Russian) MR0443083 Zbl 0278.60039
[B] H. Bunke, "Gewöhnliche Differentialgleichungen mit zufällige Parametern" , Akademie Verlag (1972) MR423523
[F] A. Freedman, "Stochastic differential equations and applications" , 1 , Acad. Press (1975)
[H] R.Z. Hasminski, "Stochastic stability of differential equations" , Sijthoff & Noordhoff (1980) (Translated from Russian)
[IW] N. Ikeda, S. Watanabe, "Stochastic differential equations and diffusion processes" , North-Holland & Kodansha (1981) MR0637061 Zbl 0495.60005
[So] T.T. Soong, "Random differential equations in science and engineering" , Acad. Press (1973) MR0451405 Zbl 0348.60081
[SrVs] S.K. Srinivasan, R. Vasudevan, "Introduction to random differential equations and their applications" , Amer. Elsevier (1971) MR0329025 Zbl 0242.60002
[St] R.L. Stratonovich, "Topics in the theory of random noise" , 1–2 , Gordon & Breach (1963–1967) MR0158437 Zbl 0183.22007
[StVa] D.W. Stroock, S.R.S. Varadhan, "Multidimensional diffusion processes" , Springer (1979) MR0532498 Zbl 0426.60069
[G] Th. Gard, "Introduction to stochastic differential equations" , M. Dekker (1988) MR0917064 Zbl 0628.60064
[Ø] B. Øksendahl, "Stochastic differential equations" , Springer (1987)
[P] P. Protter, "Stochastic integration and differential equations" , Springer (1990) MR1037262 Zbl 0694.60047
[AR] S. Albeverio, M. Röckner, "Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms" Probab. Th. Rel. Fields , 89 (1991) pp. 347–386 MR1113223 Zbl 0725.60055
[El] K.D. Elworthy, "Stochastic differential equations on manifolds" , Cambridge Univ. Press (1982) MR0675100 Zbl 0514.58001
[Em] M. Emery, "Stochastic calculus in manifolds" , Springer (1989) ((Appendix by P.A. Meyer.)) MR1030543 Zbl 0697.60060
[Sob] K. Sobczyk, "Stochastic differential equations. With applications to physics and engineering" , Kluwer (1991) MR1135326 Zbl 0762.60050
How to Cite This Entry:
Stochastic differential equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_differential_equation&oldid=24283
This article was adapted from an original article by A.N. Shiryaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article