Namespaces
Variants
Actions

Difference between revisions of "Cartan method of exterior forms"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (typos)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
A differential-algebraic method of studying systems of differential equations and manifolds with various structures. The algebraic basis of the method is the Grassmann algebra. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c0205401.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c0205402.png" />-dimensional vector space over an arbitrary field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c0205403.png" /> with basis vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c0205404.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c0205405.png" />. In addition to the basis vectors, one defines for any natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c0205406.png" /> the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c0205407.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c0205408.png" />, according to the following rule: If at least two of the natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c0205409.png" /> are identical, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054010.png" />; if all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054011.png" /> are distinct and the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054012.png" /> are a permutation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054013.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054014.png" /> if the permutation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054016.png" />, is even, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054017.png" /> if this permutation is odd. In the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054018.png" /> the exterior product is defined: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054019.png" />; in addition, the usual laws for a hypercomplex system (i.e. an associative algebra) are required to hold. The algebra of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054020.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054021.png" /> so constructed is called the Grassmann algebra. A vector of the form
+
<!--
 +
c0205401.png
 +
$#A+1 = 299 n = 0
 +
$#C+1 = 299 : ~/encyclopedia/old_files/data/C020/C.0200540 Cartan method of exterior forms
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054022.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
is called a monomial of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054024.png" />. A sum of monomials of the same degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054025.png" /> is called an exterior form of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054026.png" />; a sum of monomials of the first degree is called a linear form. The elements of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054027.png" /> are, by definition, forms of degree zero. The vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054028.png" /> generate the Grassmann algebra and so do any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054029.png" /> linearly independent combinations of them
+
A differential-algebraic method of studying systems of differential equations and manifolds with various structures. The algebraic basis of the method is the Grassmann algebra. Let  $  V $
 +
be a $  2  ^ {n} $-
 +
dimensional vector space over an arbitrary field  $  K $
 +
with basis vectors  $  e  ^ {0} , e  ^ {i} , e  ^ {ij} \dots e ^ {1 \dots n } $,  
 +
$  i \leq  j < k \leq  n $.  
 +
In addition to the basis vectors, one defines for any natural number  $  q $
 +
the vectors  $  e ^ {i _ {1} \dots i _ {q} } $,
 +
$  i _ {1} \dots i _ {q} = 1 \dots n $,
 +
according to the following rule: If at least two of the natural numbers  $  i _ {1} \dots i _ {q} $
 +
are identical, then  $  e ^ {i _ {1} \dots i _ {q} } = 0 $;  
 +
if all the  $  i _ {1} \dots i _ {q} $
 +
are distinct and the numbers  $  j _ {1} < \dots < j _ {q} $
 +
are a permutation of $  i _ {1} \dots i _ {q} $,
 +
then  $  e ^ {i _ {1} \dots i _ {q} } = e ^ {j _ {1} \dots j _ {q} } $
 +
if the permutation  $  i _ {k} \rightarrow j _ {k} $,
 +
$  k = 1 \dots q $,
 +
is even, and  $  e ^ {i _ {1} \dots i _ {q} } = - e ^ {j _ {1} \dots j _ {q} } $
 +
if this permutation is odd. In the vector space  $  V $
 +
the exterior product is defined:  $  e ^ {i _ {1} \dots i _ {p} } \wedge e ^ {k _ {1} \dots k _ {q} } = e ^ {i _ {1} \dots i _ {p} k _ {1} \dots k _ {q} } $;
 +
in addition, the usual laws for a hypercomplex system (i.e. an associative algebra) are required to hold. The algebra of dimension  $  2  ^ {n} $
 +
over  $  K $
 +
so constructed is called the Grassmann algebra. A vector of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054030.png" /></td> </tr></table>
+
$$
 +
\lambda e ^ {i _ {1} \dots i _ {p} }  = \
 +
\lambda e ^ {i _ {1} } \wedge \dots \wedge e ^ {i _ {p} }
 +
$$
 +
 
 +
is called a monomial of degree  $  p $,
 +
$  \lambda \in K $.
 +
A sum of monomials of the same degree  $  p > 1 $
 +
is called an exterior form of degree  $  p $;  
 +
a sum of monomials of the first degree is called a linear form. The elements of the field  $  K $
 +
are, by definition, forms of degree zero. The vectors  $  e  ^ {i} $
 +
generate the Grassmann algebra and so do any  $  n $
 +
linearly independent combinations of them
 +
 
 +
$$
 +
\omega  ^ {j}  = \
 +
a _ {i}  ^ {j} e  ^ {i} ,\ \
 +
\mathop{\rm det}  ( a _ {i}  ^ {j} )  \neq  0,\ \
 +
a _ {i}  ^ {j} \in K.
 +
$$
  
 
Here and in what follows, identical indices occurring in pairs, once up and once down, are to be summed over the appropriate range.
 
Here and in what follows, identical indices occurring in pairs, once up and once down, are to be summed over the appropriate range.
Line 11: Line 59:
 
By the first-order algebraic derivative of the exterior form
 
By the first-order algebraic derivative of the exterior form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054031.png" /></td> </tr></table>
+
$$
 +
\Omega _ {p}  = \
 +
a _ {i _ {1}  \dots i _ {p} }
 +
e ^ {i _ {1} } \wedge \dots \wedge
 +
e ^ {i _ {p} }
 +
$$
  
of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054032.png" /> with respect to the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054033.png" /> is meant the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054034.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054035.png" />, obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054036.png" /> by replacing by zero all monomials not containing the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054037.png" />, while for each of the remaining monomials the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054038.png" /> is first of all brought to the leftmost position with a change of sign for each successive shift to the left, and then replaced by one. The set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054039.png" />-th order non-zero algebraic derivatives of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054040.png" /> is called the associated system of linear forms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054041.png" />. The rank of the exterior form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054042.png" /> is the rank of its associated system. It is equal to the minimum number of linear forms in terms of which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054043.png" /> can be expressed using the exterior product operation. For the study of a system of differential equations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054044.png" />, the differential Grassmann algebra is used, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054045.png" /> is taken to be the ring of analytic functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054046.png" /> real variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054047.png" /> defined in some domain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054048.png" />, and the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054049.png" /> are denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054050.png" />. Its linear forms are called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054052.png" />-forms or Pfaffian forms, where the symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054053.png" /> are the differentials of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054054.png" />. The exterior forms of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054055.png" /> are called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054057.png" />-forms or exterior differential forms of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054058.png" />. By the exterior differential of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054060.png" />-form
+
of degree $  p $
 +
with respect to the symbol $  e  ^ {i} $
 +
is meant the form $  \Omega _ {p - 1 }  = {\partial  \Omega _ {p} } / {\partial  e  ^ {i} } $
 +
of degree $  p - 1 $,  
 +
obtained from $  \Omega _ {p} $
 +
by replacing by zero all monomials not containing the symbol $  e  ^ {i} $,  
 +
while for each of the remaining monomials the symbol $  e  ^ {i} $
 +
is first of all brought to the leftmost position with a change of sign for each successive shift to the left, and then replaced by one. The set of all $  (p - 1) $-
 +
th order non-zero algebraic derivatives of the form $  \Omega _ {p} $
 +
is called the associated system of linear forms of $  \Omega _ {p} $.  
 +
The rank of the exterior form $  \Omega _ {p} $
 +
is the rank of its associated system. It is equal to the minimum number of linear forms in terms of which $  \Omega _ {p} $
 +
can be expressed using the exterior product operation. For the study of a system of differential equations in $  \mathbf R  ^ {n} $,  
 +
the differential Grassmann algebra is used, where $  K $
 +
is taken to be the ring of analytic functions in $  n $
 +
real variables $  x  ^ {i} $
 +
defined in some domain of $  \mathbf R  ^ {n} $,  
 +
and the vectors $  e  ^ {i} $
 +
are denoted by $  dx  ^ {i} $.  
 +
Its linear forms are called $  1 $-
 +
forms or Pfaffian forms, where the symbols $  dx  ^ {i} $
 +
are the differentials of the variables $  x  ^ {i} $.  
 +
The exterior forms of degree $  p > 1 $
 +
are called $  p $-
 +
forms or exterior differential forms of degree $  p $.  
 +
By the exterior differential of the $  p $-
 +
form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054061.png" /></td> </tr></table>
+
$$
 +
\Omega _ {p}  = \
 +
a _ {i _ {1}  \dots i _ {p} }
 +
dx ^ {i _ {1} } \wedge \dots \wedge
 +
dx ^ {i _ {p} }
 +
$$
  
is meant the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054062.png" />-form
+
is meant the $  (p + 1) $-
 +
form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054063.png" /></td> </tr></table>
+
$$
 +
D \Omega _ {p}  = \
 +
da _ {i _ {1}  \dots i _ {p} } \wedge
 +
dx ^ {i _ {1} } \wedge \dots \wedge
 +
dx ^ {i _ {p} } .
 +
$$
  
 
The exterior differential has the following properties:
 
The exterior differential has the following properties:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054064.png" /></td> </tr></table>
+
$$
 +
D ( \Omega _ {p} \pm
 +
\Omega _ {p}  ^ {*} )  = \
 +
D \Omega _ {p} \pm
 +
D \Omega _ {p}  ^ {*} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054065.png" /></td> </tr></table>
+
$$
 +
D ( \Omega _ {p} \wedge \Omega _ {q} )  = D \Omega _ {p} \wedge \Omega _ {q} + (-1)  ^ {p} \Omega _ {p} \wedge D \Omega _ {q} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054066.png" /></td> </tr></table>
+
$$
 +
D (D \Omega _ {p} )  \equiv  0,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054067.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054068.png" /> are arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054069.png" />-forms and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054070.png" /> is an arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054071.png" />-form.
+
where $  \Omega _ {p} $,  
 +
$  \Omega _ {p}  ^ {*} $
 +
are arbitrary $  p $-
 +
forms and $  \Omega _ {q} $
 +
is an arbitrary $  q $-
 +
form.
  
A Pfaffian form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054072.png" /> is locally the total differential of some function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054073.png" /> if and only if its exterior differential vanishes. Let
+
A Pfaffian form $  \omega = a _ {i}  ds  ^ {i} $
 +
is locally the total differential of some function $  f $
 +
if and only if its exterior differential vanishes. Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054074.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\theta  ^  \alpha  \equiv \
 +
b _ {a}  ^  \alpha
 +
(x  ^ {b} , z  ^ {p} ) \
 +
dx  ^  \alpha  + c _  \xi  ^  \alpha
 +
(x  ^ {b} , z  ^ {p} ) \
 +
dz  ^  \xi  - dz  ^  \alpha  = 0,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054075.png" /></td> </tr></table>
+
$$
 +
\alpha = 1 \dots s; \  a, b = 1 \dots m; \  \xi = s + 1 \dots r;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054076.png" /></td> </tr></table>
+
$$
 +
p = 1 \dots r,
 +
$$
  
be an arbitrary system of linearly independent Pfaffian equations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054077.png" /> independent variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054078.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054079.png" /> unknown functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054080.png" />. The system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054081.png" /> is called the closure of the system (1). The closure is called pure closure (denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054082.png" />) if the original system (1) is algebraically accounted for in it, that is, if the quantities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054083.png" /> in (1) are substituted into the quadratic forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054084.png" />. The system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054085.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054086.png" />, or the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054087.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054088.png" /> equivalent to it, is called a closed system. The system (1) is completely integrable if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054089.png" />. Equating to zero the algebraic derivatives of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054090.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054091.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054092.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054093.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054094.png" />, and adjoining the Pfaffian equations to the original system (1), one obtains a completely integrable system of equations, called the characteristic system of (1). The set of its independent first integrals forms the smallest collection of variables in terms of which all equations of the system (1) can be expressed. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054095.png" /> be the result of substituting for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054096.png" /> in the algebraic derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054097.png" /> the arbitrary variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054098.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054099.png" />. Associated with the system (1) is the sequence of matrices
+
be an arbitrary system of linearly independent Pfaffian equations in $  m $
 +
independent variables $  x  ^ {a} $
 +
and $  r $
 +
unknown functions $  z  ^ {p} $.  
 +
The system $  D \theta  ^  \alpha  = 0 $
 +
is called the closure of the system (1). The closure is called pure closure (denoted by $  \overline{ {D \theta  ^  \alpha  }}\; = 0 $)  
 +
if the original system (1) is algebraically accounted for in it, that is, if the quantities $  dz  ^  \alpha  $
 +
in (1) are substituted into the quadratic forms $  D \theta  ^  \alpha  $.  
 +
The system $  \theta  ^  \alpha  = 0 $,  
 +
$  D \theta  ^  \alpha  = 0 $,  
 +
or the system $  \theta  ^  \alpha  = 0 $,  
 +
$  \overline{ {D \theta  ^  \alpha  }}\; = 0 $
 +
equivalent to it, is called a closed system. The system (1) is completely integrable if and only if $  \overline{ {D \theta  ^  \alpha  }}\; = 0 $.  
 +
Equating to zero the algebraic derivatives of $  \overline{ {D \theta  ^  \alpha  }}\; $
 +
with respect to $  dx  ^ {a} $
 +
and $  dz  ^  \xi  $,  
 +
$  a = 1 \dots m $;  
 +
$  \xi = s + 1 \dots r $,  
 +
and adjoining the Pfaffian equations to the original system (1), one obtains a completely integrable system of equations, called the characteristic system of (1). The set of its independent first integrals forms the smallest collection of variables in terms of which all equations of the system (1) can be expressed. Let $  m _ {\xi , h }  ^  \alpha  $
 +
be the result of substituting for $  dx  ^ {a} , dz  ^  \xi  $
 +
in the algebraic derivative $  { {\partial  D \theta  ^  \alpha  } / {\partial  dz  ^  \xi  } } bar $
 +
the arbitrary variables $  x _ {h}  ^ {a} , z _ {h}  ^  \xi  $,  
 +
$  h = 1 \dots m - 1 $.  
 +
Associated with the system (1) is the sequence of matrices
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540100.png" /></td> </tr></table>
+
$$
 +
M _ {h}  = \
 +
\left (
 +
 
 +
\begin{array}{c}
 +
m _ {\xi , 1 }  ^  \alpha  \\
 +
\dots  \\
 +
m _ {\xi , h }  ^  \alpha  \\
 +
\end{array}
 +
 
 +
\right ) .
 +
$$
  
 
The numbers
 
The numbers
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540101.png" /></td> </tr></table>
+
$$
 +
s _ {1}  =   \mathop{\rm rank}  M _ {1} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540102.png" /></td> </tr></table>
+
$$
 +
s _ {2}  =   \mathop{\rm rank}  M _ {2} - \mathop{\rm rank}  M _ {1} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540103.png" /></td> </tr></table>
+
$$
 +
{\dots \dots \dots \dots \dots }
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540104.png" /></td> </tr></table>
+
$$
 +
s _ {m - 1 }  =   \mathop{\rm rank}  M _ {m - 1 }  -  \mathop{\rm rank}  M _ {m - 2 }  ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540105.png" /></td> </tr></table>
+
$$
 +
s _ {m}  = r - s -  \mathop{\rm rank}  M _ {m - 1 }
 +
$$
  
 
are called the characteristics and the number
 
are called the characteristics and the number
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540106.png" /></td> </tr></table>
+
$$
 +
= s _ {1} + 2s _ {2} + \dots + ms _ {m}  $$
  
is called the Cartan number of the system (1). By adjoining to the closed system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540107.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540108.png" /> the equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540109.png" />, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540110.png" /> are new unknown functions, one obtains the first prolongation of the system (1). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540111.png" /> be the number of functionally independent functions among the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540112.png" />. Then always <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540113.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540114.png" />, then the system (1) is in involution and its general solution depends on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540115.png" /> arbitrary functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540116.png" /> arguments, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540117.png" /> functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540118.png" /> arguments, etc., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540119.png" /> functions in one argument and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540120.png" /> arbitrary constants. If, on the other hand, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540121.png" />, then (1) needs to be prolongated; after a finite number of prolongations one obtains either a system in involution or an inconsistent system.
+
is called the Cartan number of the system (1). By adjoining to the closed system $  \theta  ^  \alpha  = 0 $,  
 +
$  \overline{ {D \theta  ^  \alpha  }}\; = 0 $
 +
the equations $  dz  ^  \xi  = b _ {a}  ^  \xi  dx  ^ {a} $,  
 +
where the $  b _ {a}  ^  \xi  $
 +
are new unknown functions, one obtains the first prolongation of the system (1). Let $  N $
 +
be the number of functionally independent functions among the $  b _ {a}  ^  \xi  $.  
 +
Then always $  N \leq  Q $.  
 +
If $  N = Q $,  
 +
then the system (1) is in involution and its general solution depends on $  s _ {m} $
 +
arbitrary functions in $  m $
 +
arguments, $  s _ {m - 1 }  $
 +
functions in $  m - 1 $
 +
arguments, etc., $  s _ {1} $
 +
functions in one argument and $  s $
 +
arbitrary constants. If, on the other hand, $  N < Q $,  
 +
then (1) needs to be prolongated; after a finite number of prolongations one obtains either a system in involution or an inconsistent system.
  
 
Suppose, for example, that the system is
 
Suppose, for example, that the system is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540122.png" /></td> </tr></table>
+
$$
 +
dz _ {1}  = \
 +
u  dx + x  ^ {2}  dy,\ \
 +
dz _ {2}  = \
 +
u  dy + y  ^ {2}  dx,
 +
$$
  
with independent variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540123.png" /> and unknown functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540124.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540125.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540126.png" />). Its pure closure has the form:
+
with independent variables $  x, y $
 +
and unknown functions $  u , z _ {1} , z _ {2} $(
 +
$  s = 2= m $,  
 +
$  r = 3 $).  
 +
Its pure closure has the form:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540127.png" /></td> </tr></table>
+
$$
 +
du \wedge dx + 2x \
 +
dx \wedge dy  = 0,\ \
 +
du \wedge dy + 2y \
 +
dy \wedge dx  = 0.
 +
$$
  
 
For this system:
 
For this system:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540128.png" /></td> </tr></table>
+
$$
 +
M _ {1}  = \
 +
\left (
 +
\begin{array}{c}
 +
X _ {1} \\
 +
Y _ {1}
 +
\end{array}
 +
 
 +
\right ) ,\ \
 +
s _ {1}  =   \mathop{\rm rank}  M _ {1} = 1,\ \
 +
s _ {2}  = 0,\ \
 +
= 1,\  N  = 0.
 +
$$
  
 
The system is not in involution. The prolongated system
 
The system is not in involution. The prolongated system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540129.png" /></td> </tr></table>
+
$$
 +
dz _ {1}  = \
 +
u  dx + x  ^ {2}  dy,\ \
 +
dz _ {2}  = \
 +
u  dy + y  ^ {2}  dx,\ \
 +
du  = 2 (y  dx + x  dy)
 +
$$
  
 
is completely integrable and its general solution has the form
 
is completely integrable and its general solution has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540130.png" /></td> </tr></table>
+
$$
 +
= 2xy + c _ {1} ,\ \
 +
z _ {1}  = \
 +
x (xy + c _ {1} ) +
 +
c _ {2} ,\ \
 +
z _ {2}  = \
 +
y (xy + c _ {1} ) +
 +
c _ {3} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540131.png" /> are arbitrary constants.
+
where c _ {1} , c _ {2} , c _ {3} $
 +
are arbitrary constants.
  
 
Application of the Cartan method of exterior forms appreciably simplifies the statements and proofs of many theorems in mathematics and theoretical mechanics. For example, the Ostrogradski theorem is given by the formula
 
Application of the Cartan method of exterior forms appreciably simplifies the statements and proofs of many theorems in mathematics and theoretical mechanics. For example, the Ostrogradski theorem is given by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540132.png" /></td> </tr></table>
+
$$
 +
\oint _  \Gamma  \Omega  = \
 +
\int\limits _ { M } D \Omega ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540133.png" /> is an analytic oriented <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540134.png" />-dimensional manifold, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540135.png" /> is its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540136.png" />-dimensional smooth boundary, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540137.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540138.png" />-form, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540139.png" /> is its exterior differential. The formula for the change of variables in a multiple integral
+
where $  M $
 +
is an analytic oriented $  (M + 1) $-
 +
dimensional manifold, $  \Gamma $
 +
is its $  m $-
 +
dimensional smooth boundary, $  \Omega $
 +
is an $  m $-
 +
form, and $  D \Omega $
 +
is its exterior differential. The formula for the change of variables in a multiple integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540140.png" /></td> </tr></table>
+
$$
 +
= {\int\limits \dots \int\limits } _ { D }
 +
f (x  ^ {1} \dots x  ^ {n} ) \
 +
dx  ^ {1} \wedge \dots \wedge dx  ^ {n}
 +
$$
  
under a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540141.png" />, defined by the formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540142.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540143.png" />, is obtained by the direct change of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540144.png" /> and their differentials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540145.png" />. Since
+
under a mapping $  p: \Delta \rightarrow D $,  
 +
defined by the formulas $  x  ^ {i} = \phi  ^ {i} (u  ^ {1} \dots u  ^ {n} ) $,  
 +
where $  D, \Delta \subset  \mathbf R  ^ {n} $,  
 +
is obtained by the direct change of the variables $  x  ^ {i} $
 +
and their differentials $  dx  ^ {i} = ( {\partial  \phi  ^ {i} } / {\partial  u  ^ {j} } )  du  ^ {j} $.  
 +
Since
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540146.png" /></td> </tr></table>
+
$$
 +
dx  ^ {1} \wedge \dots \wedge dx  ^ {n}  = \
 +
 
 +
\frac{\partial  ( \phi  ^ {1} \dots \phi  ^ {n} ) }{\partial  (u  ^ {1} \dots u  ^ {n} ) }
 +
\
 +
du  ^ {1} \wedge \dots \wedge du  ^ {n} ,
 +
$$
  
 
it follows that
 
it follows that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540147.png" /></td> </tr></table>
+
$$
 +
= {\int\limits \dots \int\limits } _  \Delta
 +
 
 +
\frac{\partial  ( \phi  ^ {1} \dots \phi  ^ {n} ) }{\partial  (u  ^ {1} \dots u  ^ {n} ) }
 +
\
 +
du  ^ {1} \wedge \dots \wedge du  ^ {n} .
 +
$$
  
Cartan's method of exterior forms is extensively used in the study of manifolds with various structures. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540148.png" /> be a differentiable manifold of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540149.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540150.png" /> be the set of differentiable functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540151.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540152.png" /> be the set of all the vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540153.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540154.png" /> be the set of skew-symmetric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540155.png" />-multilinear mappings on the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540156.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540157.png" /> copies, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540158.png" /> is a natural number).
+
Cartan's method of exterior forms is extensively used in the study of manifolds with various structures. Let $  M $
 +
be a differentiable manifold of class $  C  ^  \infty  $,  
 +
let $  F = C  ^  \infty  (M  ) $
 +
be the set of differentiable functions on $  M $,  
 +
let $  D  ^ {1} $
 +
be the set of all the vector fields on $  M $,  
 +
and let $  \mathfrak A _ {s} $
 +
be the set of skew-symmetric $  F $-
 +
multilinear mappings on the module $  D  ^ {1} \times \dots \times D  ^ {1} $(
 +
$  s $
 +
copies, where $  s \geq  1 $
 +
is a natural number).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540159.png" /> and denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540160.png" /> the direct sum of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540161.png" />:
+
Let $  \mathfrak A _ {0} = F $
 +
and denote by $  \mathfrak A $
 +
the direct sum of the $  \mathfrak A _ {s} $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540162.png" /></td> </tr></table>
+
$$
 +
\mathfrak A  = \
 +
\sum _ {s = 0 } ^  \infty 
 +
\mathfrak A _ {s} .
 +
$$
  
The elements of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540163.png" /> are called exterior differential forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540164.png" />; the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540165.png" /> are called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540167.png" />-forms. Let
+
The elements of the module $  \mathfrak A $
 +
are called exterior differential forms on $  M $;  
 +
the elements of $  \mathfrak A _ {s} $
 +
are called $  s $-
 +
forms. Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540168.png" /></td> </tr></table>
+
$$
 +
f, g  \in  C  ^  \infty  (M  ); \ \
 +
\theta  \in  \mathfrak A _ {r} ,\ \
 +
\Omega  \in  \mathfrak A _ {s} ,\ \
 +
X _ {i}  \in  D  ^ {1} .
 +
$$
  
Then their exterior product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540169.png" /> is defined by the formulas:
+
Then their exterior product $  \wedge $
 +
is defined by the formulas:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540170.png" /></td> </tr></table>
+
$$
 +
f \wedge g  = fg,\ \
 +
(f \wedge \theta )
 +
(X _ {1} \dots X _ {r} )  = \
 +
f  \theta (X _ {1} \dots X _ {r} ),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540171.png" /></td> </tr></table>
+
$$
 +
( \Omega \wedge g) (X _ {1} \dots X _ {s} )  = g \Omega (X _ {1} \dots X _ {s} ),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540172.png" /></td> </tr></table>
+
$$
 +
( \theta \wedge \Omega ) (X _ {1} \dots X _ {r + s }  ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540173.png" /></td> </tr></table>
+
$$
 +
= \
 +
{
 +
\frac{1}{(r + s)! }
 +
} \sum _ {\sigma \in S _ {r +
 +
s }  } \epsilon ( \sigma ) \theta (X _ {\sigma (1) }  \dots X _ {\sigma (r) }  ) \times
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540174.png" /></td> </tr></table>
+
$$
 +
\times
 +
\Omega (X _ {\sigma (r + 1) }  \dots X _ {\sigma (r + s) }  ),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540175.png" /> is the group of permutations of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540176.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540177.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540178.png" /> depending on whether the permutation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540179.png" /> is even or odd. The module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540180.png" /> of skew-symmetric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540181.png" />-multilinear functions with the exterior product is called the Grassmann algebra over the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540182.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540183.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540184.png" />, then one obtains the differential Grassmann algebra considered earlier. By exterior differentiation one means the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540185.png" />-linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540186.png" /> with the following properties: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540187.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540188.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540189.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540190.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540191.png" />-form defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540192.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540193.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540194.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540195.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540196.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540197.png" />. Suppose, for instance, that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540198.png" /> is a manifold with a given affine connection. An affine connection on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540199.png" /> is a rule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540200.png" /> which associates with each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540201.png" /> a linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540202.png" /> of the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540203.png" /> into itself, satisfying the following two properties:
+
where $  S _ {r + s }  $
 +
is the group of permutations of the set $  1 \dots r + s $,  
 +
and $  \epsilon ( \sigma ) = 1 $
 +
or $  -1 $
 +
depending on whether the permutation $  \sigma $
 +
is even or odd. The module $  \mathfrak A $
 +
of skew-symmetric $  F $-
 +
multilinear functions with the exterior product is called the Grassmann algebra over the manifold $  M $.  
 +
If $  M $
 +
is $  \mathbf R  ^ {n} $,  
 +
then one obtains the differential Grassmann algebra considered earlier. By exterior differentiation one means the $  \mathbf R $-
 +
linear mapping $  D: \mathfrak A \rightarrow \mathfrak A $
 +
with the following properties: $  D \mathfrak A _ {s} \subset  \mathfrak A _ {s + 1 }  $
 +
for every $  s \geq  0 $;  
 +
if $  f \in \mathfrak A _ {0} = C  ^  \infty  (M) $,  
 +
then $  Df $
 +
is the $  1 $-
 +
form defined by the formula $  Df (X) = X (f) $,  
 +
where $  X \in D  ^ {1} $;  
 +
$  D \cdot D = 0 $,  
 +
$  D ( \theta \wedge \Omega ) = D \theta \wedge \Omega + (-1)  ^ {r} \theta \wedge D \Omega $,  
 +
if $  \theta \in \mathfrak A _ {r} $,  
 +
$  \Omega \in \mathfrak A $.  
 +
Suppose, for instance, that $  M $
 +
is a manifold with a given affine connection. An affine connection on a manifold $  M $
 +
is a rule $  \nabla $
 +
which associates with each $  X \in D  ^ {1} $
 +
a linear mapping $  \nabla _ {X} $
 +
of the vector space $  D  ^ {1} $
 +
into itself, satisfying the following two properties:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540204.png" /></td> </tr></table>
+
$$
 +
\nabla _ {f  X + gY }  = \
 +
f \nabla _ {X} + g \nabla _ {Y} ; \ \
 +
\nabla _ {X} (f  Y)  = \
 +
f  \nabla _ {X} + (Xf  ) Y
 +
$$
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540205.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540206.png" />. The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540207.png" /> is called the covariant derivative with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540208.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540209.png" /> be a diffeomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540210.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540211.png" /> an affine connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540212.png" />. The formula
+
for $  f, g \in C  ^  \infty  (M  ) $,
 +
$  X, Y \in D  ^ {1} $.  
 +
The operator $  \nabla _ {X} $
 +
is called the covariant derivative with respect to $  X $.  
 +
Let $  \Phi $
 +
be a diffeomorphism of $  M $,  
 +
and $  \nabla $
 +
an affine connection on $  M $.  
 +
The formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540213.png" /></td> </tr></table>
+
$$
 +
\nabla _ {X}  ^  \prime  (Y)  = \
 +
( \nabla _ {X} \Phi (Y  ^  \Phi  )) ^ {\Phi - 1 } ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540214.png" />, defines a new affine connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540215.png" />. One says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540216.png" /> is invariant with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540217.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540218.png" />. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540219.png" /> is called an affine transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540220.png" />. Let
+
where $  X, Y \in D  ^ {1} $,  
 +
defines a new affine connection on $  M $.  
 +
One says that $  \nabla $
 +
is invariant with respect to $  \Phi $
 +
if $  \nabla  ^  \prime  = \nabla $.  
 +
In this case $  \Phi $
 +
is called an affine transformation of $  M $.  
 +
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540221.png" /></td> </tr></table>
+
$$
 +
[X, Y]  = XY - YX,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540222.png" /></td> </tr></table>
+
$$
 +
T (X, Y)  = \nabla _ {X} (Y) - \nabla _ {Y} (X) - [X, Y],
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540223.png" /></td> </tr></table>
+
$$
 +
R (X, Y)  = \nabla _ {X} \nabla _ {Y} - \nabla _ {Y} \nabla _ {X} - \nabla _ {[X, Y] }  ,
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540224.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540225.png" /> be the module dual to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540226.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540227.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540228.png" />-multilinear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540229.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540230.png" /> is a Pfaffian form, is called the torsion tensor field, and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540231.png" />; the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540232.png" />-multilinear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540233.png" /> is called the curvature tensor field, and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540234.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540235.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540236.png" /> be a basis for the vector fields in some neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540237.png" /> of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540238.png" />. The functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540239.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540240.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540241.png" /> are defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540242.png" /> by the formulas
+
for all $  X, Y \in D  ^ {1} $,  
 +
and let $  D _ {1} $
 +
be the module dual to the $  F $-
 +
module $  D  ^ {1} $.  
 +
The $  F $-
 +
multilinear mapping $  ( \omega , X, Y) \rightarrow \omega (T (X, Y)) $,  
 +
where $  \omega \in D _ {1} $
 +
is a Pfaffian form, is called the torsion tensor field, and is denoted by $  T $;  
 +
the $  F $-
 +
multilinear mapping $  ( \omega , Z, X, Y) \rightarrow \omega (R (X, Y) \cdot Z) $
 +
is called the curvature tensor field, and is denoted by $  R $.  
 +
Let $  p \in M $
 +
and let $  X _ {1} \dots X _ {n} $
 +
be a basis for the vector fields in some neighbourhood $  U _ {p} $
 +
of the point $  p $.  
 +
The functions $  \Gamma _ {IJ}  ^ {K} $,  
 +
$  T _ {IJ}  ^ {K} $,  
 +
$  R _ {IJ}  ^ {K} $
 +
are defined on $  U _ {p} $
 +
by the formulas
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540243.png" /></td> </tr></table>
+
$$
 +
\nabla _ {X _ {J}  } (X _ {J} )  = \
 +
\Gamma _ {IJ}  ^ {K} X _ {K} ,\ \
 +
T (X _ {I} , X _ {J} )  = \
 +
T _ {IJ}  ^ {K} X _ {K} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540244.png" /></td> </tr></table>
+
$$
 +
R (X _ {I} , X _ {J} ) \cdot X _ {L}  = R _ {LIJ}  ^ {K} X _ {K} ,\  I, J, K = 1 \dots n.
 +
$$
  
For the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540245.png" />-forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540246.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540247.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540248.png" /> by the formulas
+
For the $  1 $-
 +
forms $  \omega  ^ {I} $,  
 +
$  \omega _ {J}  ^ {K} $
 +
defined on $  U _ {p} $
 +
by the formulas
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540249.png" /></td> </tr></table>
+
$$
 +
\omega  ^ {I} (X _ {J} )  = \
 +
\delta _ {J}  ^ {I} ,\ \
 +
\omega _ {I}  ^ {J}  = \
 +
\Gamma _ {KI}  ^ {J} \omega  ^ {K} ,
 +
$$
  
 
the following structural equations of Cartan hold:
 
the following structural equations of Cartan hold:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540250.png" /></td> </tr></table>
+
$$
 +
D \omega  ^ {J}  = \
 +
\omega  ^ {K} \wedge
 +
\omega _ {K}  ^ {J} +
 +
{
 +
\frac{1}{2}
 +
} T _ {JK}  ^ {I}
 +
\omega  ^ {J} \wedge \omega  ^ {K} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540251.png" /></td> </tr></table>
+
$$
 +
D \omega _ {I}  ^ {J}  = \omega _ {I}  ^ {K} \wedge \omega _ {K}  ^ {J} + {
 +
\frac{1}{2}
 +
} R _ {IKL}  ^ {J} \omega  ^ {K} \wedge \omega  ^ {L} .
 +
$$
  
 
The system of Pfaffian equations
 
The system of Pfaffian equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540252.png" /></td> </tr></table>
+
$$
 +
\omega  ^ {a}  = \
 +
\lambda _ {i}  ^ {a} \omega  ^ {i} ,\ \
 +
i, j, k = 1 \dots m; \
 +
a, b = m + 1 \dots n,
 +
$$
  
defines an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540253.png" />-dimensional submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540254.png" />. Extending this system by means of the Cartan structural equations, one obtains a sequence of fundamental geometric objects of the submanifold
+
defines an $  m $-
 +
dimensional submanifold $  \mathfrak M _ {m} \subset  M $.  
 +
Extending this system by means of the Cartan structural equations, one obtains a sequence of fundamental geometric objects of the submanifold
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540255.png" /></td> </tr></table>
+
$$
 +
\mathfrak M _ {m} :\
 +
\{ \lambda _ {i}  ^ {a} \} ,\ \
 +
\{ \lambda _ {i}  ^ {a} ,\
 +
\lambda _ {ij}  ^ {a} \} , . . . ;
 +
$$
  
 
of orders one, two, etc. In the general case there exists a fundamental geometric object
 
of orders one, two, etc. In the general case there exists a fundamental geometric object
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540256.png" /></td> </tr></table>
+
$$
 +
\{ \lambda _ {i}  ^ {a} \dots
 +
\lambda _ {i _ {1}  \dots i _ {k} }  ^ {a} \}
 +
$$
  
of finite order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540257.png" /> determining the submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540258.png" /> up to constants. In the study of submanifolds of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540259.png" />, Cartan's method of exterior forms is usually applied in conjunction with the moving-frame method (see, for example, [[#References|[4]]]).
+
of finite order $  k $
 +
determining the submanifold $  \mathfrak M _ {m} $
 +
up to constants. In the study of submanifolds of the manifold $  M $,  
 +
Cartan's method of exterior forms is usually applied in conjunction with the moving-frame method (see, for example, [[#References|[4]]]).
  
 
The method is named after E. Cartan, who, from 1899 onward, made extensive use of exterior forms.
 
The method is named after E. Cartan, who, from 1899 onward, made extensive use of exterior forms.
Line 171: Line 588:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Cartan, "Les systèmes différentiells extérieurs et leurs application en géométrie" , Hermann (1945)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.P. Finikov, "Cartan's method of exterior forms in differential geometry" , '''1–3''' , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Helgason, "Differential geometry and symmetric spaces" , Acad. Press (1962) {{MR|0145455}} {{ZBL|0111.18101}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Cartan, "La géométrie des éspaces Riemanniennes" , ''Mém. Sci. Math.'' , '''9''' , Gauthier-Villars (1925)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Cartan, "Les systèmes différentiells extérieurs et leurs application en géométrie" , Hermann (1945)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.P. Finikov, "Cartan's method of exterior forms in differential geometry" , '''1–3''' , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Helgason, "Differential geometry and symmetric spaces" , Acad. Press (1962) {{MR|0145455}} {{ZBL|0111.18101}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Cartan, "La géométrie des éspaces Riemanniennes" , ''Mém. Sci. Math.'' , '''9''' , Gauthier-Villars (1925)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
It is more usual to view an exterior form of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540260.png" /> as a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540261.png" /> such that: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540262.png" /> is linear (from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540263.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540264.png" />) for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540265.png" />; and b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540266.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540267.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540268.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540269.png" /> is a fixed vector space over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540270.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540271.png" />.
+
It is more usual to view an exterior form of degree $  p $
 +
as a function $  \Omega : E  ^ {p} \rightarrow K $
 +
such that: a) $  v _ {i} \mapsto \Omega (v _ {1} \dots v _ {i} \dots v _ {p} ) $
 +
is linear (from $  E $
 +
to $  K $)  
 +
for each $  i $;  
 +
and b) $  \Omega (v _ {1} \dots v _ {i} \dots v _ {j} \dots v _ {p} ) = 0 $
 +
if $  v _ {i} = v _ {j} $,  
 +
$  i \neq j $.  
 +
Here $  E $
 +
is a fixed vector space over a field $  K $
 +
of dimension $  n $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540272.png" /> is a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540273.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540274.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540275.png" />, is the exterior form which assigns the value 1 to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540276.png" /> and the value 0 to any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540277.png" />-tuple of basis vectors containing some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540278.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540279.png" />.
+
If $  e _ {1} \dots e _ {n} $
 +
is a basis of $  E $,  
 +
then $  e ^ {i _ {1} \dots i _ {p} } $,
 +
$  i _ {1} < \dots < i _ {p} $,  
 +
is the exterior form which assigns the value 1 to $  (e _ {i _ {1}  } \dots e _ {i _ {p}  } ) $
 +
and the value 0 to any $  p $-
 +
tuple of basis vectors containing some $  e _ {j} $
 +
with $  j \notin \{ i _ {1} \dots i _ {p} \} $.
  
Taking for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540280.png" /> the tangent space of a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540281.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540282.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540283.png" />, one gets the link with the article's description of the Cartan calculus on manifolds.
+
Taking for $  E $
 +
the tangent space of a manifold $  M $
 +
at a point $  x \in M $
 +
and $  K = \mathbf R $,  
 +
one gets the link with the article's description of the Cartan calculus on manifolds.
  
The [[Inner product|inner product]], or contraction, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540284.png" /> with the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540285.png" /> is the exterior form of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540286.png" /> given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540287.png" />; it is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540288.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540289.png" />. The "first-order algebraic derivative" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540290.png" /> of the article is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540291.png" />.
+
The [[Inner product|inner product]], or contraction, of $  \Omega $
 +
with the vector $  v \in E $
 +
is the exterior form of degree $  p - 1 $
 +
given by $  (v _ {1} \dots v _ {p - 1 }  ) \mapsto \Omega (v, v _ {1} \dots v _ {p} ) $;  
 +
it is denoted by $  v \llcorner \Omega $
 +
or $  i (v) \cdot \Omega $.  
 +
The "first-order algebraic derivative" $  {\partial  \Omega _ {p} } / {\partial  e  ^ {i} } $
 +
of the article is equal to $  e _ {i} \llcorner \Omega _ {p} $.
  
In the definition of differential Grassmann algebras, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540292.png" /> of analytic functions is not a field. However, no problems arise if one uses rings instead, and in fact the ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540293.png" /> functions is used in the article when discussing the Cartan calculus on manifolds.
+
In the definition of differential Grassmann algebras, the set $  K $
 +
of analytic functions is not a field. However, no problems arise if one uses rings instead, and in fact the ring of $  C  ^  \infty  $
 +
functions is used in the article when discussing the Cartan calculus on manifolds.
  
Instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540294.png" /> for the exterior differential of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540295.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540296.png" /> one more often uses the notation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540297.png" />. The exterior differential of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540298.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540299.png" />.
+
Instead of $  D \Omega _ {p} $
 +
for the exterior differential of a $  p $-
 +
form $  \Omega _ {p} $
 +
one more often uses the notation $  d \Omega _ {p} $.  
 +
The exterior differential of a function $  f $
 +
is $  df = ( \partial  f / \partial  x  ^ {i} )  dx  ^ {i} $.
  
 
In the Western literature Ostrogradski's theorem is usually called the [[Stokes theorem|Stokes theorem]]; the statement that a Pfaffian form is locally the total derivative of a function if and only if its exterior derivative is zero is of course (part) of the Poincaré lemma; cf. also [[Differential form|Differential form]] for these two items.
 
In the Western literature Ostrogradski's theorem is usually called the [[Stokes theorem|Stokes theorem]]; the statement that a Pfaffian form is locally the total derivative of a function if and only if its exterior derivative is zero is of course (part) of the Poincaré lemma; cf. also [[Differential form|Differential form]] for these two items.
Line 191: Line 642:
 
For a complete account on systems of Pfaffian equations, including the Cartan–Kähler theorem and the Cartan–Kuranishi theorem, see [[#References|[a1]]] and [[Pfaffian structure|Pfaffian structure]]; [[Pfaffian equation|Pfaffian equation]] and [[Pfaffian problem|Pfaffian problem]].
 
For a complete account on systems of Pfaffian equations, including the Cartan–Kähler theorem and the Cartan–Kuranishi theorem, see [[#References|[a1]]] and [[Pfaffian structure|Pfaffian structure]]; [[Pfaffian equation|Pfaffian equation]] and [[Pfaffian problem|Pfaffian problem]].
  
The Grassmann algebra attached to a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540300.png" /> is the special case of the [[Clifford algebra|Clifford algebra]] attached to a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540301.png" /> and a quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540302.png" /> in case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540303.png" />.
+
The Grassmann algebra attached to a vector space $  V $
 +
is the special case of the [[Clifford algebra|Clifford algebra]] attached to a vector space $  V $
 +
and a quadratic form $  Q $
 +
in case $  Q = 0 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Dieudonné, "Treatise on analysis" , Acad. Press (1974) pp. Chapt. 18, Sect. 8–14 (Translated from French) {{MR|0362066}} {{ZBL|0292.58001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Cartan, "Leçons sur les invariants intégraux" , Hermann (1971) {{MR|0355764}} {{ZBL|0212.12501}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Dieudonné, "Treatise on analysis" , Acad. Press (1974) pp. Chapt. 18, Sect. 8–14 (Translated from French) {{MR|0362066}} {{ZBL|0292.58001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Cartan, "Leçons sur les invariants intégraux" , Hermann (1971) {{MR|0355764}} {{ZBL|0212.12501}} </TD></TR></table>

Latest revision as of 11:01, 4 June 2020


A differential-algebraic method of studying systems of differential equations and manifolds with various structures. The algebraic basis of the method is the Grassmann algebra. Let $ V $ be a $ 2 ^ {n} $- dimensional vector space over an arbitrary field $ K $ with basis vectors $ e ^ {0} , e ^ {i} , e ^ {ij} \dots e ^ {1 \dots n } $, $ i \leq j < k \leq n $. In addition to the basis vectors, one defines for any natural number $ q $ the vectors $ e ^ {i _ {1} \dots i _ {q} } $, $ i _ {1} \dots i _ {q} = 1 \dots n $, according to the following rule: If at least two of the natural numbers $ i _ {1} \dots i _ {q} $ are identical, then $ e ^ {i _ {1} \dots i _ {q} } = 0 $; if all the $ i _ {1} \dots i _ {q} $ are distinct and the numbers $ j _ {1} < \dots < j _ {q} $ are a permutation of $ i _ {1} \dots i _ {q} $, then $ e ^ {i _ {1} \dots i _ {q} } = e ^ {j _ {1} \dots j _ {q} } $ if the permutation $ i _ {k} \rightarrow j _ {k} $, $ k = 1 \dots q $, is even, and $ e ^ {i _ {1} \dots i _ {q} } = - e ^ {j _ {1} \dots j _ {q} } $ if this permutation is odd. In the vector space $ V $ the exterior product is defined: $ e ^ {i _ {1} \dots i _ {p} } \wedge e ^ {k _ {1} \dots k _ {q} } = e ^ {i _ {1} \dots i _ {p} k _ {1} \dots k _ {q} } $; in addition, the usual laws for a hypercomplex system (i.e. an associative algebra) are required to hold. The algebra of dimension $ 2 ^ {n} $ over $ K $ so constructed is called the Grassmann algebra. A vector of the form

$$ \lambda e ^ {i _ {1} \dots i _ {p} } = \ \lambda e ^ {i _ {1} } \wedge \dots \wedge e ^ {i _ {p} } $$

is called a monomial of degree $ p $, $ \lambda \in K $. A sum of monomials of the same degree $ p > 1 $ is called an exterior form of degree $ p $; a sum of monomials of the first degree is called a linear form. The elements of the field $ K $ are, by definition, forms of degree zero. The vectors $ e ^ {i} $ generate the Grassmann algebra and so do any $ n $ linearly independent combinations of them

$$ \omega ^ {j} = \ a _ {i} ^ {j} e ^ {i} ,\ \ \mathop{\rm det} ( a _ {i} ^ {j} ) \neq 0,\ \ a _ {i} ^ {j} \in K. $$

Here and in what follows, identical indices occurring in pairs, once up and once down, are to be summed over the appropriate range.

By the first-order algebraic derivative of the exterior form

$$ \Omega _ {p} = \ a _ {i _ {1} \dots i _ {p} } e ^ {i _ {1} } \wedge \dots \wedge e ^ {i _ {p} } $$

of degree $ p $ with respect to the symbol $ e ^ {i} $ is meant the form $ \Omega _ {p - 1 } = {\partial \Omega _ {p} } / {\partial e ^ {i} } $ of degree $ p - 1 $, obtained from $ \Omega _ {p} $ by replacing by zero all monomials not containing the symbol $ e ^ {i} $, while for each of the remaining monomials the symbol $ e ^ {i} $ is first of all brought to the leftmost position with a change of sign for each successive shift to the left, and then replaced by one. The set of all $ (p - 1) $- th order non-zero algebraic derivatives of the form $ \Omega _ {p} $ is called the associated system of linear forms of $ \Omega _ {p} $. The rank of the exterior form $ \Omega _ {p} $ is the rank of its associated system. It is equal to the minimum number of linear forms in terms of which $ \Omega _ {p} $ can be expressed using the exterior product operation. For the study of a system of differential equations in $ \mathbf R ^ {n} $, the differential Grassmann algebra is used, where $ K $ is taken to be the ring of analytic functions in $ n $ real variables $ x ^ {i} $ defined in some domain of $ \mathbf R ^ {n} $, and the vectors $ e ^ {i} $ are denoted by $ dx ^ {i} $. Its linear forms are called $ 1 $- forms or Pfaffian forms, where the symbols $ dx ^ {i} $ are the differentials of the variables $ x ^ {i} $. The exterior forms of degree $ p > 1 $ are called $ p $- forms or exterior differential forms of degree $ p $. By the exterior differential of the $ p $- form

$$ \Omega _ {p} = \ a _ {i _ {1} \dots i _ {p} } dx ^ {i _ {1} } \wedge \dots \wedge dx ^ {i _ {p} } $$

is meant the $ (p + 1) $- form

$$ D \Omega _ {p} = \ da _ {i _ {1} \dots i _ {p} } \wedge dx ^ {i _ {1} } \wedge \dots \wedge dx ^ {i _ {p} } . $$

The exterior differential has the following properties:

$$ D ( \Omega _ {p} \pm \Omega _ {p} ^ {*} ) = \ D \Omega _ {p} \pm D \Omega _ {p} ^ {*} , $$

$$ D ( \Omega _ {p} \wedge \Omega _ {q} ) = D \Omega _ {p} \wedge \Omega _ {q} + (-1) ^ {p} \Omega _ {p} \wedge D \Omega _ {q} , $$

$$ D (D \Omega _ {p} ) \equiv 0, $$

where $ \Omega _ {p} $, $ \Omega _ {p} ^ {*} $ are arbitrary $ p $- forms and $ \Omega _ {q} $ is an arbitrary $ q $- form.

A Pfaffian form $ \omega = a _ {i} ds ^ {i} $ is locally the total differential of some function $ f $ if and only if its exterior differential vanishes. Let

$$ \tag{1 } \theta ^ \alpha \equiv \ b _ {a} ^ \alpha (x ^ {b} , z ^ {p} ) \ dx ^ \alpha + c _ \xi ^ \alpha (x ^ {b} , z ^ {p} ) \ dz ^ \xi - dz ^ \alpha = 0, $$

$$ \alpha = 1 \dots s; \ a, b = 1 \dots m; \ \xi = s + 1 \dots r; $$

$$ p = 1 \dots r, $$

be an arbitrary system of linearly independent Pfaffian equations in $ m $ independent variables $ x ^ {a} $ and $ r $ unknown functions $ z ^ {p} $. The system $ D \theta ^ \alpha = 0 $ is called the closure of the system (1). The closure is called pure closure (denoted by $ \overline{ {D \theta ^ \alpha }}\; = 0 $) if the original system (1) is algebraically accounted for in it, that is, if the quantities $ dz ^ \alpha $ in (1) are substituted into the quadratic forms $ D \theta ^ \alpha $. The system $ \theta ^ \alpha = 0 $, $ D \theta ^ \alpha = 0 $, or the system $ \theta ^ \alpha = 0 $, $ \overline{ {D \theta ^ \alpha }}\; = 0 $ equivalent to it, is called a closed system. The system (1) is completely integrable if and only if $ \overline{ {D \theta ^ \alpha }}\; = 0 $. Equating to zero the algebraic derivatives of $ \overline{ {D \theta ^ \alpha }}\; $ with respect to $ dx ^ {a} $ and $ dz ^ \xi $, $ a = 1 \dots m $; $ \xi = s + 1 \dots r $, and adjoining the Pfaffian equations to the original system (1), one obtains a completely integrable system of equations, called the characteristic system of (1). The set of its independent first integrals forms the smallest collection of variables in terms of which all equations of the system (1) can be expressed. Let $ m _ {\xi , h } ^ \alpha $ be the result of substituting for $ dx ^ {a} , dz ^ \xi $ in the algebraic derivative $ { {\partial D \theta ^ \alpha } / {\partial dz ^ \xi } } bar $ the arbitrary variables $ x _ {h} ^ {a} , z _ {h} ^ \xi $, $ h = 1 \dots m - 1 $. Associated with the system (1) is the sequence of matrices

$$ M _ {h} = \ \left ( \begin{array}{c} m _ {\xi , 1 } ^ \alpha \\ \dots \\ m _ {\xi , h } ^ \alpha \\ \end{array} \right ) . $$

The numbers

$$ s _ {1} = \mathop{\rm rank} M _ {1} , $$

$$ s _ {2} = \mathop{\rm rank} M _ {2} - \mathop{\rm rank} M _ {1} , $$

$$ {\dots \dots \dots \dots \dots } $$

$$ s _ {m - 1 } = \mathop{\rm rank} M _ {m - 1 } - \mathop{\rm rank} M _ {m - 2 } , $$

$$ s _ {m} = r - s - \mathop{\rm rank} M _ {m - 1 } $$

are called the characteristics and the number

$$ Q = s _ {1} + 2s _ {2} + \dots + ms _ {m} $$

is called the Cartan number of the system (1). By adjoining to the closed system $ \theta ^ \alpha = 0 $, $ \overline{ {D \theta ^ \alpha }}\; = 0 $ the equations $ dz ^ \xi = b _ {a} ^ \xi dx ^ {a} $, where the $ b _ {a} ^ \xi $ are new unknown functions, one obtains the first prolongation of the system (1). Let $ N $ be the number of functionally independent functions among the $ b _ {a} ^ \xi $. Then always $ N \leq Q $. If $ N = Q $, then the system (1) is in involution and its general solution depends on $ s _ {m} $ arbitrary functions in $ m $ arguments, $ s _ {m - 1 } $ functions in $ m - 1 $ arguments, etc., $ s _ {1} $ functions in one argument and $ s $ arbitrary constants. If, on the other hand, $ N < Q $, then (1) needs to be prolongated; after a finite number of prolongations one obtains either a system in involution or an inconsistent system.

Suppose, for example, that the system is

$$ dz _ {1} = \ u dx + x ^ {2} dy,\ \ dz _ {2} = \ u dy + y ^ {2} dx, $$

with independent variables $ x, y $ and unknown functions $ u , z _ {1} , z _ {2} $( $ s = 2= m $, $ r = 3 $). Its pure closure has the form:

$$ du \wedge dx + 2x \ dx \wedge dy = 0,\ \ du \wedge dy + 2y \ dy \wedge dx = 0. $$

For this system:

$$ M _ {1} = \ \left ( \begin{array}{c} X _ {1} \\ Y _ {1} \end{array} \right ) ,\ \ s _ {1} = \mathop{\rm rank} M _ {1} = 1,\ \ s _ {2} = 0,\ \ Q = 1,\ N = 0. $$

The system is not in involution. The prolongated system

$$ dz _ {1} = \ u dx + x ^ {2} dy,\ \ dz _ {2} = \ u dy + y ^ {2} dx,\ \ du = 2 (y dx + x dy) $$

is completely integrable and its general solution has the form

$$ u = 2xy + c _ {1} ,\ \ z _ {1} = \ x (xy + c _ {1} ) + c _ {2} ,\ \ z _ {2} = \ y (xy + c _ {1} ) + c _ {3} , $$

where $ c _ {1} , c _ {2} , c _ {3} $ are arbitrary constants.

Application of the Cartan method of exterior forms appreciably simplifies the statements and proofs of many theorems in mathematics and theoretical mechanics. For example, the Ostrogradski theorem is given by the formula

$$ \oint _ \Gamma \Omega = \ \int\limits _ { M } D \Omega , $$

where $ M $ is an analytic oriented $ (M + 1) $- dimensional manifold, $ \Gamma $ is its $ m $- dimensional smooth boundary, $ \Omega $ is an $ m $- form, and $ D \Omega $ is its exterior differential. The formula for the change of variables in a multiple integral

$$ J = {\int\limits \dots \int\limits } _ { D } f (x ^ {1} \dots x ^ {n} ) \ dx ^ {1} \wedge \dots \wedge dx ^ {n} $$

under a mapping $ p: \Delta \rightarrow D $, defined by the formulas $ x ^ {i} = \phi ^ {i} (u ^ {1} \dots u ^ {n} ) $, where $ D, \Delta \subset \mathbf R ^ {n} $, is obtained by the direct change of the variables $ x ^ {i} $ and their differentials $ dx ^ {i} = ( {\partial \phi ^ {i} } / {\partial u ^ {j} } ) du ^ {j} $. Since

$$ dx ^ {1} \wedge \dots \wedge dx ^ {n} = \ \frac{\partial ( \phi ^ {1} \dots \phi ^ {n} ) }{\partial (u ^ {1} \dots u ^ {n} ) } \ du ^ {1} \wedge \dots \wedge du ^ {n} , $$

it follows that

$$ J = {\int\limits \dots \int\limits } _ \Delta \frac{\partial ( \phi ^ {1} \dots \phi ^ {n} ) }{\partial (u ^ {1} \dots u ^ {n} ) } \ du ^ {1} \wedge \dots \wedge du ^ {n} . $$

Cartan's method of exterior forms is extensively used in the study of manifolds with various structures. Let $ M $ be a differentiable manifold of class $ C ^ \infty $, let $ F = C ^ \infty (M ) $ be the set of differentiable functions on $ M $, let $ D ^ {1} $ be the set of all the vector fields on $ M $, and let $ \mathfrak A _ {s} $ be the set of skew-symmetric $ F $- multilinear mappings on the module $ D ^ {1} \times \dots \times D ^ {1} $( $ s $ copies, where $ s \geq 1 $ is a natural number).

Let $ \mathfrak A _ {0} = F $ and denote by $ \mathfrak A $ the direct sum of the $ \mathfrak A _ {s} $:

$$ \mathfrak A = \ \sum _ {s = 0 } ^ \infty \mathfrak A _ {s} . $$

The elements of the module $ \mathfrak A $ are called exterior differential forms on $ M $; the elements of $ \mathfrak A _ {s} $ are called $ s $- forms. Let

$$ f, g \in C ^ \infty (M ); \ \ \theta \in \mathfrak A _ {r} ,\ \ \Omega \in \mathfrak A _ {s} ,\ \ X _ {i} \in D ^ {1} . $$

Then their exterior product $ \wedge $ is defined by the formulas:

$$ f \wedge g = fg,\ \ (f \wedge \theta ) (X _ {1} \dots X _ {r} ) = \ f \theta (X _ {1} \dots X _ {r} ), $$

$$ ( \Omega \wedge g) (X _ {1} \dots X _ {s} ) = g \Omega (X _ {1} \dots X _ {s} ), $$

$$ ( \theta \wedge \Omega ) (X _ {1} \dots X _ {r + s } ) = $$

$$ = \ { \frac{1}{(r + s)! } } \sum _ {\sigma \in S _ {r + s } } \epsilon ( \sigma ) \theta (X _ {\sigma (1) } \dots X _ {\sigma (r) } ) \times $$

$$ \times \Omega (X _ {\sigma (r + 1) } \dots X _ {\sigma (r + s) } ), $$

where $ S _ {r + s } $ is the group of permutations of the set $ 1 \dots r + s $, and $ \epsilon ( \sigma ) = 1 $ or $ -1 $ depending on whether the permutation $ \sigma $ is even or odd. The module $ \mathfrak A $ of skew-symmetric $ F $- multilinear functions with the exterior product is called the Grassmann algebra over the manifold $ M $. If $ M $ is $ \mathbf R ^ {n} $, then one obtains the differential Grassmann algebra considered earlier. By exterior differentiation one means the $ \mathbf R $- linear mapping $ D: \mathfrak A \rightarrow \mathfrak A $ with the following properties: $ D \mathfrak A _ {s} \subset \mathfrak A _ {s + 1 } $ for every $ s \geq 0 $; if $ f \in \mathfrak A _ {0} = C ^ \infty (M) $, then $ Df $ is the $ 1 $- form defined by the formula $ Df (X) = X (f) $, where $ X \in D ^ {1} $; $ D \cdot D = 0 $, $ D ( \theta \wedge \Omega ) = D \theta \wedge \Omega + (-1) ^ {r} \theta \wedge D \Omega $, if $ \theta \in \mathfrak A _ {r} $, $ \Omega \in \mathfrak A $. Suppose, for instance, that $ M $ is a manifold with a given affine connection. An affine connection on a manifold $ M $ is a rule $ \nabla $ which associates with each $ X \in D ^ {1} $ a linear mapping $ \nabla _ {X} $ of the vector space $ D ^ {1} $ into itself, satisfying the following two properties:

$$ \nabla _ {f X + gY } = \ f \nabla _ {X} + g \nabla _ {Y} ; \ \ \nabla _ {X} (f Y) = \ f \nabla _ {X} + (Xf ) Y $$

for $ f, g \in C ^ \infty (M ) $, $ X, Y \in D ^ {1} $. The operator $ \nabla _ {X} $ is called the covariant derivative with respect to $ X $. Let $ \Phi $ be a diffeomorphism of $ M $, and $ \nabla $ an affine connection on $ M $. The formula

$$ \nabla _ {X} ^ \prime (Y) = \ ( \nabla _ {X} \Phi (Y ^ \Phi )) ^ {\Phi - 1 } , $$

where $ X, Y \in D ^ {1} $, defines a new affine connection on $ M $. One says that $ \nabla $ is invariant with respect to $ \Phi $ if $ \nabla ^ \prime = \nabla $. In this case $ \Phi $ is called an affine transformation of $ M $. Let

$$ [X, Y] = XY - YX, $$

$$ T (X, Y) = \nabla _ {X} (Y) - \nabla _ {Y} (X) - [X, Y], $$

$$ R (X, Y) = \nabla _ {X} \nabla _ {Y} - \nabla _ {Y} \nabla _ {X} - \nabla _ {[X, Y] } , $$

for all $ X, Y \in D ^ {1} $, and let $ D _ {1} $ be the module dual to the $ F $- module $ D ^ {1} $. The $ F $- multilinear mapping $ ( \omega , X, Y) \rightarrow \omega (T (X, Y)) $, where $ \omega \in D _ {1} $ is a Pfaffian form, is called the torsion tensor field, and is denoted by $ T $; the $ F $- multilinear mapping $ ( \omega , Z, X, Y) \rightarrow \omega (R (X, Y) \cdot Z) $ is called the curvature tensor field, and is denoted by $ R $. Let $ p \in M $ and let $ X _ {1} \dots X _ {n} $ be a basis for the vector fields in some neighbourhood $ U _ {p} $ of the point $ p $. The functions $ \Gamma _ {IJ} ^ {K} $, $ T _ {IJ} ^ {K} $, $ R _ {IJ} ^ {K} $ are defined on $ U _ {p} $ by the formulas

$$ \nabla _ {X _ {J} } (X _ {J} ) = \ \Gamma _ {IJ} ^ {K} X _ {K} ,\ \ T (X _ {I} , X _ {J} ) = \ T _ {IJ} ^ {K} X _ {K} , $$

$$ R (X _ {I} , X _ {J} ) \cdot X _ {L} = R _ {LIJ} ^ {K} X _ {K} ,\ I, J, K = 1 \dots n. $$

For the $ 1 $- forms $ \omega ^ {I} $, $ \omega _ {J} ^ {K} $ defined on $ U _ {p} $ by the formulas

$$ \omega ^ {I} (X _ {J} ) = \ \delta _ {J} ^ {I} ,\ \ \omega _ {I} ^ {J} = \ \Gamma _ {KI} ^ {J} \omega ^ {K} , $$

the following structural equations of Cartan hold:

$$ D \omega ^ {J} = \ \omega ^ {K} \wedge \omega _ {K} ^ {J} + { \frac{1}{2} } T _ {JK} ^ {I} \omega ^ {J} \wedge \omega ^ {K} , $$

$$ D \omega _ {I} ^ {J} = \omega _ {I} ^ {K} \wedge \omega _ {K} ^ {J} + { \frac{1}{2} } R _ {IKL} ^ {J} \omega ^ {K} \wedge \omega ^ {L} . $$

The system of Pfaffian equations

$$ \omega ^ {a} = \ \lambda _ {i} ^ {a} \omega ^ {i} ,\ \ i, j, k = 1 \dots m; \ a, b = m + 1 \dots n, $$

defines an $ m $- dimensional submanifold $ \mathfrak M _ {m} \subset M $. Extending this system by means of the Cartan structural equations, one obtains a sequence of fundamental geometric objects of the submanifold

$$ \mathfrak M _ {m} :\ \{ \lambda _ {i} ^ {a} \} ,\ \ \{ \lambda _ {i} ^ {a} ,\ \lambda _ {ij} ^ {a} \} , . . . ; $$

of orders one, two, etc. In the general case there exists a fundamental geometric object

$$ \{ \lambda _ {i} ^ {a} \dots \lambda _ {i _ {1} \dots i _ {k} } ^ {a} \} $$

of finite order $ k $ determining the submanifold $ \mathfrak M _ {m} $ up to constants. In the study of submanifolds of the manifold $ M $, Cartan's method of exterior forms is usually applied in conjunction with the moving-frame method (see, for example, [4]).

The method is named after E. Cartan, who, from 1899 onward, made extensive use of exterior forms.

References

[1] E. Cartan, "Les systèmes différentiells extérieurs et leurs application en géométrie" , Hermann (1945)
[2] S.P. Finikov, "Cartan's method of exterior forms in differential geometry" , 1–3 , Moscow-Leningrad (1948) (In Russian)
[3] S. Helgason, "Differential geometry and symmetric spaces" , Acad. Press (1962) MR0145455 Zbl 0111.18101
[4] E. Cartan, "La géométrie des éspaces Riemanniennes" , Mém. Sci. Math. , 9 , Gauthier-Villars (1925)

Comments

It is more usual to view an exterior form of degree $ p $ as a function $ \Omega : E ^ {p} \rightarrow K $ such that: a) $ v _ {i} \mapsto \Omega (v _ {1} \dots v _ {i} \dots v _ {p} ) $ is linear (from $ E $ to $ K $) for each $ i $; and b) $ \Omega (v _ {1} \dots v _ {i} \dots v _ {j} \dots v _ {p} ) = 0 $ if $ v _ {i} = v _ {j} $, $ i \neq j $. Here $ E $ is a fixed vector space over a field $ K $ of dimension $ n $.

If $ e _ {1} \dots e _ {n} $ is a basis of $ E $, then $ e ^ {i _ {1} \dots i _ {p} } $, $ i _ {1} < \dots < i _ {p} $, is the exterior form which assigns the value 1 to $ (e _ {i _ {1} } \dots e _ {i _ {p} } ) $ and the value 0 to any $ p $- tuple of basis vectors containing some $ e _ {j} $ with $ j \notin \{ i _ {1} \dots i _ {p} \} $.

Taking for $ E $ the tangent space of a manifold $ M $ at a point $ x \in M $ and $ K = \mathbf R $, one gets the link with the article's description of the Cartan calculus on manifolds.

The inner product, or contraction, of $ \Omega $ with the vector $ v \in E $ is the exterior form of degree $ p - 1 $ given by $ (v _ {1} \dots v _ {p - 1 } ) \mapsto \Omega (v, v _ {1} \dots v _ {p} ) $; it is denoted by $ v \llcorner \Omega $ or $ i (v) \cdot \Omega $. The "first-order algebraic derivative" $ {\partial \Omega _ {p} } / {\partial e ^ {i} } $ of the article is equal to $ e _ {i} \llcorner \Omega _ {p} $.

In the definition of differential Grassmann algebras, the set $ K $ of analytic functions is not a field. However, no problems arise if one uses rings instead, and in fact the ring of $ C ^ \infty $ functions is used in the article when discussing the Cartan calculus on manifolds.

Instead of $ D \Omega _ {p} $ for the exterior differential of a $ p $- form $ \Omega _ {p} $ one more often uses the notation $ d \Omega _ {p} $. The exterior differential of a function $ f $ is $ df = ( \partial f / \partial x ^ {i} ) dx ^ {i} $.

In the Western literature Ostrogradski's theorem is usually called the Stokes theorem; the statement that a Pfaffian form is locally the total derivative of a function if and only if its exterior derivative is zero is of course (part) of the Poincaré lemma; cf. also Differential form for these two items.

For a complete account on systems of Pfaffian equations, including the Cartan–Kähler theorem and the Cartan–Kuranishi theorem, see [a1] and Pfaffian structure; Pfaffian equation and Pfaffian problem.

The Grassmann algebra attached to a vector space $ V $ is the special case of the Clifford algebra attached to a vector space $ V $ and a quadratic form $ Q $ in case $ Q = 0 $.

References

[a1] J. Dieudonné, "Treatise on analysis" , Acad. Press (1974) pp. Chapt. 18, Sect. 8–14 (Translated from French) MR0362066 Zbl 0292.58001
[a2] E. Cartan, "Leçons sur les invariants intégraux" , Hermann (1971) MR0355764 Zbl 0212.12501
How to Cite This Entry:
Cartan method of exterior forms. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cartan_method_of_exterior_forms&oldid=24050
This article was adapted from an original article by V.S. Malakhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article