Difference between revisions of "Flat morphism"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | f0406001.png | ||
+ | $#A+1 = 46 n = 0 | ||
+ | $#C+1 = 46 : ~/encyclopedia/old_files/data/F040/F.0400600 Flat morphism | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | Flat morphisms are used also in descent theory. A morphism of schemes is called faithfully flat if it is flat and surjective. Then, as a rule, one may check any property of a certain object over | + | A [[Morphism|morphism]] of schemes $ f: X\rightarrow Y $ |
+ | such that for any point $ x \in X $ | ||
+ | the local ring $ {\mathcal O} _ {X,x} $ | ||
+ | is flat over $ {\mathcal O} _ {Y,f( x) } $( | ||
+ | see [[Flat module|Flat module]]). In general, let $ {\mathcal F} $ | ||
+ | be a sheaf of $ {\mathcal O} _ {X} $- | ||
+ | modules; it is called flat over $ Y $ | ||
+ | at a point $ x \in X $ | ||
+ | if $ {\mathcal F} _ {x} $ | ||
+ | is a flat module over the ring $ {\mathcal O} _ {Y,f( x) } $. | ||
+ | Subject to certain (fairly weak) finiteness conditions, the set of points at which a coherent $ {\mathcal O} _ {X} $- | ||
+ | module $ {\mathcal F} $ | ||
+ | is flat over $ Y $ | ||
+ | is open in $ X $. | ||
+ | If, moreover, $ Y $ | ||
+ | is an integral scheme, then there exists an open non-empty subset $ U \subset Y $ | ||
+ | such that $ {\mathcal F} $ | ||
+ | is a flat sheaf over $ Y $ | ||
+ | at all points lying above $ U $. | ||
+ | |||
+ | A flat morphism of finite type corresponds to the intuitive concept of a continuous family of varieties. A flat morphism is open and equi-dimensional (i.e. the dimensions of the fibres $ f ^ { - 1 } ( y) $ | ||
+ | are locally constant for $ y \in Y $). | ||
+ | For many geometric properties, the set of points $ x \in X $ | ||
+ | at which the fibre $ f ^ { - 1 } ( f( x)) $ | ||
+ | of a flat morphism $ f: X \rightarrow Y $ | ||
+ | has this property is open in $ X $. | ||
+ | If a flat morphism $ f $ | ||
+ | is proper (cf. [[Proper morphism|Proper morphism]]), then the set of points $ y \in Y $ | ||
+ | for which the fibres over them have this property is open . | ||
+ | |||
+ | Flat morphisms are used also in descent theory. A morphism of schemes is called faithfully flat if it is flat and surjective. Then, as a rule, one may check any property of a certain object over $ Y $ | ||
+ | simply by checking this property for the object obtained after a faithfully-flat [[Base change|base change]] $ f: C\rightarrow Y $. | ||
+ | In this connection, interest attaches to flatness criteria for a morphism $ f: X\rightarrow Y $( | ||
+ | or for the $ {\mathcal O} _ {X} $- | ||
+ | module $ {\mathcal F} $); | ||
+ | here $ Y $ | ||
+ | can be regarded as a local scheme. The simplest criterion relates to the case where the base $ Y $ | ||
+ | is one-dimensional and regular: A coherent $ {\mathcal O} _ {X} $- | ||
+ | module $ {\mathcal F} $ | ||
+ | is flat if and only if the uniformizing parameter in $ Y $ | ||
+ | has a trivial annihilator in $ {\mathcal F} $. | ||
+ | In a certain sense the general case is reducible to the one-dimensional case. Let $ Y $ | ||
+ | be a reduced Noetherian scheme and let for any morphism $ Z \rightarrow Y $, | ||
+ | where $ Z $ | ||
+ | is a one-dimensional regular scheme, the base change $ f _ {Z} : X _ {Y} \times Z \rightarrow Z $ | ||
+ | be a flat morphism; then $ f $ | ||
+ | is a flat morphism. Another flatness criterion requires that $ f: X \rightarrow Y $ | ||
+ | is universally open, while $ Y $ | ||
+ | and the geometric fibres $ f ^ { - 1 } ( \overline{y}\; ) $ | ||
+ | are reduced. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" ''Publ. Math. IHES'' , '''24''' (1964) {{MR|0173675}} {{ZBL|0136.15901}} </TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" ''Publ. Math. IHES'' , '''28''' (1966) {{MR|0217086}} {{ZBL|0144.19904}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) {{MR|0209285}} {{ZBL|0187.42701}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Raynaud, L. Gruson, "Critères de platitude et de projectivité. Techniques de "platification" d'un module" ''Invent. Math.'' , '''13''' (1971) pp. 1–89 {{MR|0308104}} {{ZBL|0227.14010}} </TD></TR></table> | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" ''Publ. Math. IHES'' , '''24''' (1964) {{MR|0173675}} {{ZBL|0136.15901}} </TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" ''Publ. Math. IHES'' , '''28''' (1966) {{MR|0217086}} {{ZBL|0144.19904}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) {{MR|0209285}} {{ZBL|0187.42701}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Raynaud, L. Gruson, "Critères de platitude et de projectivité. Techniques de "platification" d'un module" ''Invent. Math.'' , '''13''' (1971) pp. 1–89 {{MR|0308104}} {{ZBL|0227.14010}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> |
Latest revision as of 19:39, 5 June 2020
A morphism of schemes $ f: X\rightarrow Y $
such that for any point $ x \in X $
the local ring $ {\mathcal O} _ {X,x} $
is flat over $ {\mathcal O} _ {Y,f( x) } $(
see Flat module). In general, let $ {\mathcal F} $
be a sheaf of $ {\mathcal O} _ {X} $-
modules; it is called flat over $ Y $
at a point $ x \in X $
if $ {\mathcal F} _ {x} $
is a flat module over the ring $ {\mathcal O} _ {Y,f( x) } $.
Subject to certain (fairly weak) finiteness conditions, the set of points at which a coherent $ {\mathcal O} _ {X} $-
module $ {\mathcal F} $
is flat over $ Y $
is open in $ X $.
If, moreover, $ Y $
is an integral scheme, then there exists an open non-empty subset $ U \subset Y $
such that $ {\mathcal F} $
is a flat sheaf over $ Y $
at all points lying above $ U $.
A flat morphism of finite type corresponds to the intuitive concept of a continuous family of varieties. A flat morphism is open and equi-dimensional (i.e. the dimensions of the fibres $ f ^ { - 1 } ( y) $ are locally constant for $ y \in Y $). For many geometric properties, the set of points $ x \in X $ at which the fibre $ f ^ { - 1 } ( f( x)) $ of a flat morphism $ f: X \rightarrow Y $ has this property is open in $ X $. If a flat morphism $ f $ is proper (cf. Proper morphism), then the set of points $ y \in Y $ for which the fibres over them have this property is open .
Flat morphisms are used also in descent theory. A morphism of schemes is called faithfully flat if it is flat and surjective. Then, as a rule, one may check any property of a certain object over $ Y $ simply by checking this property for the object obtained after a faithfully-flat base change $ f: C\rightarrow Y $. In this connection, interest attaches to flatness criteria for a morphism $ f: X\rightarrow Y $( or for the $ {\mathcal O} _ {X} $- module $ {\mathcal F} $); here $ Y $ can be regarded as a local scheme. The simplest criterion relates to the case where the base $ Y $ is one-dimensional and regular: A coherent $ {\mathcal O} _ {X} $- module $ {\mathcal F} $ is flat if and only if the uniformizing parameter in $ Y $ has a trivial annihilator in $ {\mathcal F} $. In a certain sense the general case is reducible to the one-dimensional case. Let $ Y $ be a reduced Noetherian scheme and let for any morphism $ Z \rightarrow Y $, where $ Z $ is a one-dimensional regular scheme, the base change $ f _ {Z} : X _ {Y} \times Z \rightarrow Z $ be a flat morphism; then $ f $ is a flat morphism. Another flatness criterion requires that $ f: X \rightarrow Y $ is universally open, while $ Y $ and the geometric fibres $ f ^ { - 1 } ( \overline{y}\; ) $ are reduced.
References
[1a] | A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" Publ. Math. IHES , 24 (1964) MR0173675 Zbl 0136.15901 |
[1b] | A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" Publ. Math. IHES , 28 (1966) MR0217086 Zbl 0144.19904 |
[2] | D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) MR0209285 Zbl 0187.42701 |
[3] | M. Raynaud, L. Gruson, "Critères de platitude et de projectivité. Techniques de "platification" d'un module" Invent. Math. , 13 (1971) pp. 1–89 MR0308104 Zbl 0227.14010 |
Comments
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001 |
Flat morphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Flat_morphism&oldid=23832