|
|
(4 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
− | The ring of rational equivalence classes of algebraic cycles (cf. [[Algebraic cycle|Algebraic cycle]]) on a non-singular quasi-projective algebraic variety. Multiplication in this ring is defined in terms of intersections of cycles (cf. [[Intersection theory|Intersection theory]]).
| + | {{MSC|14Cxx|14G10,18F25}} |
| + | {{TEX|done}} |
| | | |
− | The Chow ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c0221601.png" /> of a variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c0221602.png" /> is a graded commutative ring, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c0221603.png" /> denotes the group of classes of cycles of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c0221604.png" />. For a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c0221605.png" /> the inverse-image homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c0221606.png" /> is a homomorphism of rings, and the direct-image homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c0221607.png" /> is (for proper <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c0221608.png" />) a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c0221609.png" />-modules. This means that there is a projection formula:
| + | $ |
| + | \newcommand{\CH}{\mathrm{CH}} |
| + | $ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216010.png" /></td> </tr></table>
| + | The ''Chow ring'' of a non-singular quasi-projective algebraic variety |
| + | is the ring of rational equivalence classes of algebraic cycles (cf. [[Algebraic cycle|Algebraic cycle]]) on that variety. Multiplication in this ring is defined in terms of intersections of cycles (cf. [[Intersection theory|Intersection theory]]). |
| | | |
− | The Chow ring is the domain of values for the theory of Chern classes of vector bundles (cf. [[#References|[1]]]). More precisely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216011.png" /> is a locally trivial sheaf of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216012.png" /> over a variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216013.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216014.png" /> is its projectivization, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216015.png" /> is the canonical projection, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216016.png" /> is the class of divisors corresponding to the invertible sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216017.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216018.png" /> is an imbedding and the Chow ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216019.png" /> may be identified with the quotient ring of the polynomial ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216020.png" /> by the ideal generated by the polynomial | + | The Chow ring $\CH(X)=\bigoplus_{i\geq 0} \CH^i(X)$ of a variety $X$ is a graded commutative ring, where $\CH^i(X)$ denotes the group of classes of cycles of codimension $i$. In earlier publications, the notation $\mathrm{A}(X)$ is sometimes used instead of $\CH(X)$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216021.png" /></td> </tr></table>
| + | For a morphism $f:X \to Y$ the inverse-image homomorphism $f^*:\CH(Y) \to \CH(X)$ is a homomorphism of rings, and for $f$ proper, the direct-image homomorphism $f_*: \CH(X)\to \CH(Y)$ is a homomorphism of $\CH(Y)$-modules. This means that there is a projection formula: |
| | | |
− | The coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216022.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216024.png" />-th Chern class of the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216025.png" />.
| + | $$f_*(f^*(y)\cdot x) = y\cdot f_*(x), \quad x \in CH(X), \quad y \in CH(Y)$$ |
| | | |
− | In the case of a variety over the field of complex numbers, there is a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216026.png" /> into the singular cohomology ring that preserves the degree and commutes with the inverse-image and direct-image homomorphisms.
| + | The Chow ring is the domain of values for the classical theory of Chern classes of vector bundles (cf. {{Cite|Ha}}). More precisely, if $E$ is a locally free sheaf of rank $r$ over a variety $X$, if $\pi:P(E) \to X$ is its projectivization and if $\zeta \in \CH^1(P(E))$ is the class of the divisor corresponding to the invertible sheaf $\mathcal{O}_{P(E)}(1)$, then $\pi^*$ is injective and the Chow ring $\CH(P(E))$ may be identified with the quotient ring of the polynomial ring $\CH(X)[\zeta]$ by the ideal generated by the polynomial |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216027.png" /> is a singular quasi-projective variety, then its Chow ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216028.png" /> is defined as the direct limit of rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216029.png" /> over all morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216030.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216031.png" /> is non-singular. One obtains a contravariant functor into the category of graded rings, satisfying the projection formula (cf. [[#References|[3]]]).
| + | $$\zeta^r -c_1(E)\zeta^{r-1}+\cdots + (-1)^r c_r(E).$$ |
| | | |
− | ====References====
| + | The coefficient $c_k(E)\in \CH^k(X)$ is called the $k$-th Chern class of the locally free sheaf $E$. |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> "Anneaux de Chow et applications" , ''Sem. Chevalley'' (1958) {{MR|}} {{ZBL|0098.13101}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> W. Fulton, "Rational equivalence on singular varieties" ''Publ. Math. IHES'' , '''45''' (1975) pp. 147–167 {{MR|0404257}} {{ZBL|0332.14002}} </TD></TR></table>
| + | |
| + | In the case of a variety over the field of complex numbers, there is a homomorphism $\CH(X) \to \mathrm{H}(X,\mathbb Z)$ into the singular cohomology ring that preserves the degree and commutes with the inverse-image and direct-image homomorphisms. |
| | | |
| + | If $X$ is a singular quasi-projective variety, then its Chow ring $\CH(X)$ is defined as the direct limit of rings $\CH(X)=\varinjlim \CH(Y)$ over all morphisms $f:X \to Y$, where $Y$ is non-singular. One obtains a contravariant functor into the category of graded rings, satisfying the projection formula (cf. {{Cite|Fu}}). |
| | | |
| + | ====References==== |
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Ch}}||valign="top"| "Anneaux de Chow et applications", ''Sem. Chevalley'' (1958) {{MR|}} {{ZBL|0098.13101}} |
| + | |- |
| + | |valign="top"|{{Ref|Fu}}||valign="top"| W. Fulton, "Rational equivalence on singular varieties" ''Publ. Math. IHES'', '''45''' (1975) pp. 147–167 {{MR|0404257}} {{ZBL|0332.14002}} |
| + | |- |
| + | |valign="top"|{{Ref|Ha}}||valign="top"| R. Hartshorne, "Algebraic geometry", Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} |
| + | |- |
| + | |} |
| | | |
| ====Comments==== | | ====Comments==== |
− | For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216032.png" /> a Noetherian scheme (or ring), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216033.png" /> denote the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216034.png" />-groups of (the category of) finitely-generated projective modules over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216035.png" />; cf. [[Algebraic K-theory|Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216036.png" />-theory]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216037.png" /> denote the sheaf obtained by sheafifying (in the Zariski topology) the pre-sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216038.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216039.png" /> runs through the open (affine) subschemes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216040.png" />. One then has the Bloch formula [[#References|[a1]]] | + | For $X$ a Noetherian scheme (or ring), let $K_n(X)$ denote the $n$-th $K$-group of (the category of) finitely-generated projective modules over $X$; cf. [[Algebraic K-theory|Algebraic K-theory]]. Let $\mathcal{K}$ denote the sheaf obtained by sheafifying (in the Zariski topology) the pre-sheaf $U \mapsto K_n(U)$ where $U$ runs through the open (affine) subschemes of $X$. One then has the Bloch formula {{Cite|Bl}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216041.png" /></td> </tr></table>
| + | $$\CH^p(X) \simeq H^p(X, \mathcal{K}_p)$$ |
| | | |
− | providing a link between the Chow groups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216042.png" /> and the cohomology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216043.png" /> with values in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216044.png" />-sheaves of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216045.png" />. Using results on the algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216046.png" />-theory of fields, [[#References|[a2]]], this can be used to obtain results on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216047.png" />, in particular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216048.png" />, [[#References|[a3]]]. Another often used notation for the Chow group is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216049.png" /> instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216050.png" />. | + | providing a link between the Chow groups of $X$ and the cohomology of $X$ with values in the $\mathcal{K}$-sheaves of $X$. Using results on the algebraic K-theory of fields, {{Cite|MeSu}}, this can be used to obtain results on Chow groups, in particular on $\CH^2$, {{Cite|Co}}. |
| | | |
| Cf. [[Sheaf theory|Sheaf theory]] for the notions of sheafification, pre-sheaf, sheaf, and cohomology with values in a sheaf. | | Cf. [[Sheaf theory|Sheaf theory]] for the notions of sheafification, pre-sheaf, sheaf, and cohomology with values in a sheaf. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Bloch, "Lectures on algebraic cycles" , Dept. Math. Duke Univ. (1980) {{MR|0558224}} {{ZBL|0436.14003}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.S. Merkur'ev, A.A. Suslin, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216051.png" />-cohomology of Severi–Brauer varieties and norm residue homomorphism" ''Math. USSR Izv.'' , '''21''' (1983) pp. 307–340 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''46''' : 5 (1982) pp. 1011–1046 {{MR|}} {{ZBL|0525.18008}} {{ZBL|0525.18007}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.-L. Colliot-Thélène, "Hilbert's theorem 90 for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022160/c02216052.png" /> with application to the Chow groups of rational surfaces" ''Inv. Math.'' , '''71''' (1983) pp. 1–20</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W. Fulton, "Intersection theory" , Springer (1984) {{MR|0735435}} {{MR|0732620}} {{ZBL|0541.14005}} </TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Bl}}||valign="top"| S. Bloch, "Lectures on algebraic cycles", Dept. Math. Duke Univ. (1980) {{MR|0558224}} {{ZBL|0436.14003}} |
| + | |- |
| + | |valign="top"|{{Ref|Co}}||valign="top"| J.-L. Colliot-Thélène, "Hilbert's theorem 90 for $K_2$ with application to the Chow groups of rational surfaces" ''Inv. Math.'', '''71''' (1983) pp. 1–20 {{MR|0688259}} {{ZBL|0527.14011}} |
| + | |- |
| + | |valign="top"|{{Ref|Fu2}}||valign="top"| W. Fulton, "Intersection theory", Springer (1984) {{MR|0735435}} {{MR|0732620}} {{ZBL|0541.14005}} |
| + | |- |
| + | |valign="top"|{{Ref|MeSu}}||valign="top"| A.S. Merkur'ev, A.A. Suslin, "K-cohomology of Severi–Brauer varieties and norm residue homomorphism" ''Math. USSR Izv.'', '''21''' (1983) pp. 307–340 ''Izv. Akad. Nauk SSSR Ser. Mat.'', '''46''' : 5 (1982) pp. 1011–1046 {{MR|}} {{ZBL|0525.18008}} {{ZBL|0525.18007}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 14Cxx Secondary: 14G1018F25 [MSN][ZBL]
$
\newcommand{\CH}{\mathrm{CH}}
$
The Chow ring of a non-singular quasi-projective algebraic variety
is the ring of rational equivalence classes of algebraic cycles (cf. Algebraic cycle) on that variety. Multiplication in this ring is defined in terms of intersections of cycles (cf. Intersection theory).
The Chow ring $\CH(X)=\bigoplus_{i\geq 0} \CH^i(X)$ of a variety $X$ is a graded commutative ring, where $\CH^i(X)$ denotes the group of classes of cycles of codimension $i$. In earlier publications, the notation $\mathrm{A}(X)$ is sometimes used instead of $\CH(X)$.
For a morphism $f:X \to Y$ the inverse-image homomorphism $f^*:\CH(Y) \to \CH(X)$ is a homomorphism of rings, and for $f$ proper, the direct-image homomorphism $f_*: \CH(X)\to \CH(Y)$ is a homomorphism of $\CH(Y)$-modules. This means that there is a projection formula:
$$f_*(f^*(y)\cdot x) = y\cdot f_*(x), \quad x \in CH(X), \quad y \in CH(Y)$$
The Chow ring is the domain of values for the classical theory of Chern classes of vector bundles (cf. [Ha]). More precisely, if $E$ is a locally free sheaf of rank $r$ over a variety $X$, if $\pi:P(E) \to X$ is its projectivization and if $\zeta \in \CH^1(P(E))$ is the class of the divisor corresponding to the invertible sheaf $\mathcal{O}_{P(E)}(1)$, then $\pi^*$ is injective and the Chow ring $\CH(P(E))$ may be identified with the quotient ring of the polynomial ring $\CH(X)[\zeta]$ by the ideal generated by the polynomial
$$\zeta^r -c_1(E)\zeta^{r-1}+\cdots + (-1)^r c_r(E).$$
The coefficient $c_k(E)\in \CH^k(X)$ is called the $k$-th Chern class of the locally free sheaf $E$.
In the case of a variety over the field of complex numbers, there is a homomorphism $\CH(X) \to \mathrm{H}(X,\mathbb Z)$ into the singular cohomology ring that preserves the degree and commutes with the inverse-image and direct-image homomorphisms.
If $X$ is a singular quasi-projective variety, then its Chow ring $\CH(X)$ is defined as the direct limit of rings $\CH(X)=\varinjlim \CH(Y)$ over all morphisms $f:X \to Y$, where $Y$ is non-singular. One obtains a contravariant functor into the category of graded rings, satisfying the projection formula (cf. [Fu]).
References
For $X$ a Noetherian scheme (or ring), let $K_n(X)$ denote the $n$-th $K$-group of (the category of) finitely-generated projective modules over $X$; cf. Algebraic K-theory. Let $\mathcal{K}$ denote the sheaf obtained by sheafifying (in the Zariski topology) the pre-sheaf $U \mapsto K_n(U)$ where $U$ runs through the open (affine) subschemes of $X$. One then has the Bloch formula [Bl]
$$\CH^p(X) \simeq H^p(X, \mathcal{K}_p)$$
providing a link between the Chow groups of $X$ and the cohomology of $X$ with values in the $\mathcal{K}$-sheaves of $X$. Using results on the algebraic K-theory of fields, [MeSu], this can be used to obtain results on Chow groups, in particular on $\CH^2$, [Co].
Cf. Sheaf theory for the notions of sheafification, pre-sheaf, sheaf, and cohomology with values in a sheaf.
References
[Bl] |
S. Bloch, "Lectures on algebraic cycles", Dept. Math. Duke Univ. (1980) MR0558224 Zbl 0436.14003
|
[Co] |
J.-L. Colliot-Thélène, "Hilbert's theorem 90 for $K_2$ with application to the Chow groups of rational surfaces" Inv. Math., 71 (1983) pp. 1–20 MR0688259 Zbl 0527.14011
|
[Fu2] |
W. Fulton, "Intersection theory", Springer (1984) MR0735435 MR0732620 Zbl 0541.14005
|
[MeSu] |
A.S. Merkur'ev, A.A. Suslin, "K-cohomology of Severi–Brauer varieties and norm residue homomorphism" Math. USSR Izv., 21 (1983) pp. 307–340 Izv. Akad. Nauk SSSR Ser. Mat., 46 : 5 (1982) pp. 1011–1046 Zbl 0525.18008 Zbl 0525.18007
|