|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | t0937601.png |
| + | $#A+1 = 79 n = 0 |
| + | $#C+1 = 79 : ~/encyclopedia/old_files/data/T093/T.0903760 Transition function, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''transition probability'' | | ''transition probability'' |
| | | |
− | A family of measures used in the theory of Markov processes for determining the distribution at future instants from known states at previous times. Let a measurable space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937601.png" /> be such that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937602.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937603.png" /> contains all one-point subsets from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937604.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937605.png" /> be a subset of the real line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937606.png" />. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937607.png" /> given for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937608.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t0937609.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376011.png" /> is called a transition function for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376012.png" /> if: a) for given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376015.png" />, it is a measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376016.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376017.png" />; b) for given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376020.png" />, it is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376021.png" />-measurable function of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376022.png" />; c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376023.png" /> and for all limit points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376025.png" /> from the right in the topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376026.png" />,
| + | {{MSC|60J35}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376027.png" /></td> </tr></table>
| + | [[Category:Markov processes]] |
| | | |
− | and d) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376030.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376031.png" />, the Kolmogorov–Chapman equation is fulfilled: | + | A family of measures used in the theory of Markov processes for determining the distribution at future instants from known states at previous times. Let a measurable space $ ( E, {\mathcal B}) $ |
| + | be such that the $ \sigma $- |
| + | algebra $ {\mathcal B} $ |
| + | contains all one-point subsets from $ E $, |
| + | and let $ T $ |
| + | be a subset of the real line $ \mathbf R $. |
| + | A function $ P( s, x; t, B) $ |
| + | given for $ s, t \in T $, |
| + | $ s \leq t $, |
| + | $ x \in E $ |
| + | and $ B \in {\mathcal B} $ |
| + | is called a transition function for $ ( E, {\mathcal B}) $ |
| + | if: a) for given $ s $, |
| + | $ x $ |
| + | and $ t $, |
| + | it is a measure on $ {\mathcal B} $, |
| + | with $ P( s, x; t, B) \leq 1 $; |
| + | b) for given $ s $, |
| + | $ t $ |
| + | and $ B $, |
| + | it is a $ {\mathcal B} $- |
| + | measurable function of the point $ x $; |
| + | c) $ P( s, x; s, \{ x \} ) \equiv 1 $ |
| + | and for all limit points $ s $ |
| + | of $ T $ |
| + | from the right in the topology of $ \mathbf R $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376032.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | $$ |
| + | \lim\limits _ {\begin{array}{c} |
| + | t\downarrow s \\ |
| + | t \in T |
| + | \end{array} |
| + | } P( s, x; t, E) = 1; |
| + | $$ |
| | | |
− | (in some cases, requirement c) may be omitted or weakened). A transition function is called a Markov transition function if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376033.png" />, and a subMarkov transition function otherwise. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376034.png" /> is at most countable, then the transition function is specified by means of the matrix of transition probabilities
| + | and d) for all $ x \in E $, |
| + | $ B \in {\mathcal B} $ |
| + | and $ s \leq t \leq u $ |
| + | from $ T $, |
| + | the Kolmogorov–Chapman equation is fulfilled: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376035.png" /></td> </tr></table>
| + | $$ \tag{* } |
| + | P( s, x; u , B) = \int\limits _ { E } P( s, x; t, dy) P( t, y; u , B) |
| + | $$ |
| | | |
− | (see [[Transition probabilities|Transition probabilities]]; [[Matrix of transition probabilities|Matrix of transition probabilities]]). It often happens that for any admissible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376038.png" /> the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376039.png" /> has a density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376040.png" /> with respect to a certain measure. If in this case the following form of equation (*) is satisfied: | + | (in some cases, requirement c) may be omitted or weakened). A transition function is called a Markov transition function if $ P( s, x; t, E) \equiv 1 $, |
| + | and a subMarkov transition function otherwise. If $ E $ |
| + | is at most countable, then the transition function is specified by means of the matrix of transition probabilities |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376041.png" /></td> </tr></table>
| + | $$ |
| + | P ^ {st} = \| P _ {xy} ( s, t) \| |
| + | $$ |
| | | |
− | for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376043.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376045.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376046.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376047.png" /> is called a transition density. | + | (see [[Transition probabilities|Transition probabilities]]; [[Matrix of transition probabilities|Matrix of transition probabilities]]). It often happens that for any admissible $ s $, |
| + | $ x $ |
| + | and $ t $ |
| + | the measure $ P( s, x; t, \cdot ) $ |
| + | has a density $ p( s, x; t, \cdot ) $ |
| + | with respect to a certain measure. If in this case the following form of equation (*) is satisfied: |
| | | |
− | Under very general conditions (cf. [[#References|[1]]], [[#References|[2]]]), the transition function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376048.png" /> can be related to a Markov process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376049.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376050.png" /> (in the case of a Markov transition function, this process does not terminate, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376051.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376052.png" />-a.s.). On the other hand, the Markov property for a random process enables one, as a rule, to put the process into correspondence with a transition function [[#References|[3]]].
| + | $$ |
| + | p( s, x; u , z) = \int\limits _ { E } p( s, x; t, y) p( t, y; u , z) dy |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376053.png" /> be homogeneous in the sense that the set of values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376054.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376055.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376056.png" /> forms a semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376057.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376058.png" /> under addition (for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376061.png" />). If, moreover, the transition function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376062.png" /> depends only on the difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376063.png" />, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376064.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376065.png" /> is a function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376067.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376068.png" /> satisfying the corresponding form of conditions a)–d), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376069.png" /> is called a homogeneous transition function. The latter name is also given to a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376070.png" /> for which (*) takes the form
| + | for any $ x $ |
| + | and $ z $ |
| + | from $ E $ |
| + | and $ s \leq t \leq u $ |
| + | from $ T $, |
| + | then $ p( s, x; t, y) $ |
| + | is called a transition density. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376071.png" /></td> </tr></table>
| + | Under very general conditions (cf. {{Cite|N}}, {{Cite|GS}}), the transition function $ P( s, x; t, B) $ |
| + | can be related to a Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} ^ {s} , {\mathsf P} _ {s,x} ) $ |
| + | for which $ {\mathsf P} _ {s,x} \{ x _ {t} \in B \} = P( s, x; t, B) $( |
| + | in the case of a Markov transition function, this process does not terminate, i.e. $ \zeta = \infty $ |
| + | $ P _ {s,x} $- |
| + | a.s.). On the other hand, the Markov property for a random process enables one, as a rule, to put the process into correspondence with a transition function {{Cite|K}}. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376072.png" /></td> </tr></table>
| + | Let $ T $ |
| + | be homogeneous in the sense that the set of values of $ t- s $ |
| + | for $ s \leq t $ |
| + | from $ T $ |
| + | forms a semi-group $ \widetilde{T} $ |
| + | in $ \mathbf R $ |
| + | under addition (for example, $ T = \mathbf R $, |
| + | $ T = \{ {t \in \mathbf R } : {t \geq 0 } \} $, |
| + | $ T = \{ 0, 1 ,\dots \} $). |
| + | If, moreover, the transition function $ P( s, x; t, B) $ |
| + | depends only on the difference $ t- s $, |
| + | i.e. if $ P( s, x; t, B) = P( t- s, x, B) $, |
| + | where $ P( t, x, B) $ |
| + | is a function of $ t \in \widetilde{T} $, |
| + | $ x \in E $, |
| + | $ B \in {\mathcal B} $ |
| + | satisfying the corresponding form of conditions a)–d), then $ P( s, x; t, B) $ |
| + | is called a homogeneous transition function. The latter name is also given to a function $ P( t, x, B) $ |
| + | for which (*) takes the form |
| | | |
− | For certain purposes (such as regularizing transition functions) it is necessary to extend the definition. For example, one takes as given a family of measurable spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376074.png" />, while a transition function with respect to this family is defined as a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376075.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376076.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093760/t09376079.png" />, that satisfies a suitable modification of conditions a)–d).
| + | $$ |
| + | P( t+ s, x, B) = \int\limits _ { E } P( t, x, dy) P( s, y, B), |
| + | $$ |
| | | |
− | ====References====
| + | $$ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Neveu, "Bases mathématiques du calcul des probabilités" , Masson (1970) {{MR|0272004}} {{ZBL|0203.49901}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , '''2''' , Springer (1975) (Translated from Russian) {{MR|0375463}} {{ZBL|0305.60027}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.E. Kuznetsov, "Any Markov process in a Borel space has a transition function" ''Theory Probab. Appl.'' , '''25''' : 2 (1980) pp. 384–388 ''Teor. Veroyatnost. i ee Primenen.'' , '''25''' : 2 (1980) pp. 389–393 {{MR|0572574}} {{ZBL|0456.60077}} {{ZBL|0431.60071}} </TD></TR></table>
| + | s, t \in \widetilde{T} ,\ x \in E ,\ B \in {\mathcal B} . |
| + | $$ |
| | | |
| + | For certain purposes (such as regularizing transition functions) it is necessary to extend the definition. For example, one takes as given a family of measurable spaces $ ( E _ {t} , {\mathcal B} _ {t} ) $, |
| + | $ t \in T $, |
| + | while a transition function with respect to this family is defined as a function $ P( s, x; t, B) $, |
| + | where $ s, t \in T $, |
| + | $ s \leq t $, |
| + | $ x \in E _ {s} $, |
| + | $ B \in {\mathcal B} _ {t} $, |
| + | that satisfies a suitable modification of conditions a)–d). |
| | | |
| + | ====References==== |
| + | {| |
| + | |valign="top"|{{Ref|N}}|| J. Neveu, "Bases mathématiques du calcul des probabilités" , Masson (1970) {{MR|0272004}} {{ZBL|0203.49901}} |
| + | |- |
| + | |valign="top"|{{Ref|GS}}|| I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , '''2''' , Springer (1975) (Translated from Russian) {{MR|0375463}} {{ZBL|0305.60027}} |
| + | |- |
| + | |valign="top"|{{Ref|K}}|| S.E. Kuznetsov, "Any Markov process in a Borel space has a transition function" ''Theory Probab. Appl.'' , '''25''' : 2 (1980) pp. 384–388 ''Teor. Veroyatnost. i ee Primenen.'' , '''25''' : 2 (1980) pp. 389–393 {{MR|0572574}} {{ZBL|0456.60077}} {{ZBL|0431.60071}} |
| + | |} |
| | | |
| ====Comments==== | | ====Comments==== |
Line 38: |
Line 146: |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''1–3''' , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) {{MR|0939365}} {{MR|0898005}} {{MR|0727641}} {{MR|0745449}} {{MR|0566768}} {{MR|0521810}} {{ZBL|0716.60001}} {{ZBL|0494.60002}} {{ZBL|0494.60001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) {{MR|0958914}} {{ZBL|0649.60079}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Albeverio, Z.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" ''Forum Math.'' , '''3''' (1991) pp. 389–400</TD></TR></table>
| + | {| |
| + | |valign="top"|{{Ref|DM}}|| C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''1–3''' , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) {{MR|0939365}} {{MR|0898005}} {{MR|0727641}} {{MR|0745449}} {{MR|0566768}} {{MR|0521810}} {{ZBL|0716.60001}} {{ZBL|0494.60002}} {{ZBL|0494.60001}} |
| + | |- |
| + | |valign="top"|{{Ref|S}}|| M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) {{MR|0958914}} {{ZBL|0649.60079}} |
| + | |- |
| + | |valign="top"|{{Ref|AM}}|| S. Albeverio, Z.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" ''Forum Math.'' , '''3''' (1991) pp. 389–400 |
| + | |} |
transition probability
2020 Mathematics Subject Classification: Primary: 60J35 [MSN][ZBL]
A family of measures used in the theory of Markov processes for determining the distribution at future instants from known states at previous times. Let a measurable space $ ( E, {\mathcal B}) $
be such that the $ \sigma $-
algebra $ {\mathcal B} $
contains all one-point subsets from $ E $,
and let $ T $
be a subset of the real line $ \mathbf R $.
A function $ P( s, x; t, B) $
given for $ s, t \in T $,
$ s \leq t $,
$ x \in E $
and $ B \in {\mathcal B} $
is called a transition function for $ ( E, {\mathcal B}) $
if: a) for given $ s $,
$ x $
and $ t $,
it is a measure on $ {\mathcal B} $,
with $ P( s, x; t, B) \leq 1 $;
b) for given $ s $,
$ t $
and $ B $,
it is a $ {\mathcal B} $-
measurable function of the point $ x $;
c) $ P( s, x; s, \{ x \} ) \equiv 1 $
and for all limit points $ s $
of $ T $
from the right in the topology of $ \mathbf R $,
$$
\lim\limits _ {\begin{array}{c}
t\downarrow s \\
t \in T
\end{array}
} P( s, x; t, E) = 1;
$$
and d) for all $ x \in E $,
$ B \in {\mathcal B} $
and $ s \leq t \leq u $
from $ T $,
the Kolmogorov–Chapman equation is fulfilled:
$$ \tag{* }
P( s, x; u , B) = \int\limits _ { E } P( s, x; t, dy) P( t, y; u , B)
$$
(in some cases, requirement c) may be omitted or weakened). A transition function is called a Markov transition function if $ P( s, x; t, E) \equiv 1 $,
and a subMarkov transition function otherwise. If $ E $
is at most countable, then the transition function is specified by means of the matrix of transition probabilities
$$
P ^ {st} = \| P _ {xy} ( s, t) \|
$$
(see Transition probabilities; Matrix of transition probabilities). It often happens that for any admissible $ s $,
$ x $
and $ t $
the measure $ P( s, x; t, \cdot ) $
has a density $ p( s, x; t, \cdot ) $
with respect to a certain measure. If in this case the following form of equation (*) is satisfied:
$$
p( s, x; u , z) = \int\limits _ { E } p( s, x; t, y) p( t, y; u , z) dy
$$
for any $ x $
and $ z $
from $ E $
and $ s \leq t \leq u $
from $ T $,
then $ p( s, x; t, y) $
is called a transition density.
Under very general conditions (cf. [N], [GS]), the transition function $ P( s, x; t, B) $
can be related to a Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} ^ {s} , {\mathsf P} _ {s,x} ) $
for which $ {\mathsf P} _ {s,x} \{ x _ {t} \in B \} = P( s, x; t, B) $(
in the case of a Markov transition function, this process does not terminate, i.e. $ \zeta = \infty $
$ P _ {s,x} $-
a.s.). On the other hand, the Markov property for a random process enables one, as a rule, to put the process into correspondence with a transition function [K].
Let $ T $
be homogeneous in the sense that the set of values of $ t- s $
for $ s \leq t $
from $ T $
forms a semi-group $ \widetilde{T} $
in $ \mathbf R $
under addition (for example, $ T = \mathbf R $,
$ T = \{ {t \in \mathbf R } : {t \geq 0 } \} $,
$ T = \{ 0, 1 ,\dots \} $).
If, moreover, the transition function $ P( s, x; t, B) $
depends only on the difference $ t- s $,
i.e. if $ P( s, x; t, B) = P( t- s, x, B) $,
where $ P( t, x, B) $
is a function of $ t \in \widetilde{T} $,
$ x \in E $,
$ B \in {\mathcal B} $
satisfying the corresponding form of conditions a)–d), then $ P( s, x; t, B) $
is called a homogeneous transition function. The latter name is also given to a function $ P( t, x, B) $
for which (*) takes the form
$$
P( t+ s, x, B) = \int\limits _ { E } P( t, x, dy) P( s, y, B),
$$
$$
s, t \in \widetilde{T} ,\ x \in E ,\ B \in {\mathcal B} .
$$
For certain purposes (such as regularizing transition functions) it is necessary to extend the definition. For example, one takes as given a family of measurable spaces $ ( E _ {t} , {\mathcal B} _ {t} ) $,
$ t \in T $,
while a transition function with respect to this family is defined as a function $ P( s, x; t, B) $,
where $ s, t \in T $,
$ s \leq t $,
$ x \in E _ {s} $,
$ B \in {\mathcal B} _ {t} $,
that satisfies a suitable modification of conditions a)–d).
References
[N] |
J. Neveu, "Bases mathématiques du calcul des probabilités" , Masson (1970) MR0272004 Zbl 0203.49901
|
[GS] |
I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , 2 , Springer (1975) (Translated from Russian) MR0375463 Zbl 0305.60027
|
[K] |
S.E. Kuznetsov, "Any Markov process in a Borel space has a transition function" Theory Probab. Appl. , 25 : 2 (1980) pp. 384–388 Teor. Veroyatnost. i ee Primenen. , 25 : 2 (1980) pp. 389–393 MR0572574 Zbl 0456.60077 Zbl 0431.60071
|
For additional references see also Markov chain; Markov process.
References