Namespaces
Variants
Actions

Difference between revisions of "Julia-Wolff-Carathéodory theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 93 formulas, 93 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
''Julia–Carathéodory theorem, Julia–Wolff theorem''
 
''Julia–Carathéodory theorem, Julia–Wolff theorem''
  
 
A classical statement which combines the celebrated [[Julia theorem|Julia theorem]] from 1920 [[#References|[a18]]], Carathéodory's contribution from 1929 [[#References|[a7]]] (see also [[#References|[a8]]]), and Wolff's boundary version of the [[Schwarz lemma|Schwarz lemma]] from 1926 [[#References|[a30]]].
 
A classical statement which combines the celebrated [[Julia theorem|Julia theorem]] from 1920 [[#References|[a18]]], Carathéodory's contribution from 1929 [[#References|[a7]]] (see also [[#References|[a8]]]), and Wolff's boundary version of the [[Schwarz lemma|Schwarz lemma]] from 1926 [[#References|[a30]]].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300701.png" /> be the open unit disc in the complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300702.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300703.png" /> be the set of all holomorphic functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300704.png" /> with values in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300705.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300706.png" /> (cf. also [[Analytic function|Analytic function]]). For the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300707.png" />, of holomorphic self-mappings on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300708.png" />, one writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300709.png" />; it is a [[Semi-group of holomorphic mappings|semi-group of holomorphic mappings]] with respect to composition.
+
Let $\Delta$ be the open unit disc in the complex plane $\mathbf{C}$, and let $\operatorname{Hol}( \Delta , \Omega )$ be the set of all holomorphic functions on $\Delta$ with values in a domain $\Omega$ in $\mathbf{C}$ (cf. also [[Analytic function|Analytic function]]). For the set $\operatorname{Hol}( \Delta , \Delta )$, of holomorphic self-mappings on $\Delta$, one writes $\operatorname { Hol }( \Delta )$; it is a [[Semi-group of holomorphic mappings|semi-group of holomorphic mappings]] with respect to composition.
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007010.png" /> on the unit circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007011.png" />, the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007012.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007013.png" />, a non-tangential approach region at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007014.png" /> is defined by
+
For $\omega$ on the unit circle $\partial \Delta$, the boundary of $\Delta$, and $\alpha > 1$, a non-tangential approach region at $\omega$ is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007015.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\begin{equation} \tag{a1} \Gamma ( \omega , \alpha ) = \{ z \in \Delta : | z - \omega | < \alpha ( 1 - | z | ) \}. \end{equation}
  
The term  "non-tangential"  refers to the fact that at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007017.png" /> lies in the sector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007018.png" /> (in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007019.png" />) that is the region between two straight lines in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007020.png" /> meeting at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007021.png" /> and symmetric about the radius to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007022.png" />, the boundary curves of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007023.png" /> having a corner at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007024.png" />, with angle less than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007025.png" />.
+
The term  "non-tangential"  refers to the fact that at the point $\omega$, $\Gamma ( \omega , \alpha )$ lies in the sector $S$ (in $\Delta$) that is the region between two straight lines in $\Delta$ meeting at $\omega$ and symmetric about the radius to $\omega$, the boundary curves of $S$ having a corner at $\omega$, with angle less than $\pi$.
  
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007026.png" /> is said to have a non-tangential limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007027.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007028.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007029.png" /> exists in each non-tangential region <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007030.png" />. In this case one also writes
+
A function $f \in \operatorname { Hol } ( \Delta , \mathbf{C} )$ is said to have a non-tangential limit $L$ at $\omega$ if $L = \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ exists in each non-tangential region $\Gamma ( \omega , \alpha )$. In this case one also writes
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007031.png" /></td> </tr></table>
+
\begin{equation*} L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z ). \end{equation*}
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007033.png" />, let
+
For $z \in \Delta$ and $\omega \in \partial \Delta$, let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
\begin{equation} \tag{a2} \phi _ { \omega } ( z ) = \frac { | z - \omega | ^ { 2 } } { 1 - | z | ^ { 2 } }, \end{equation}
  
and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007035.png" />, let
+
and for $k > 0$, let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007036.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
\begin{equation} \tag{a3} E ( k , \omega ) = \{ z \in \Delta : \phi _ { \omega } ( z ) \leq k \}. \end{equation}
  
The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007037.png" /> is a closed disc internally tangent to the circle at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007038.png" /> with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007039.png" /> and radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007040.png" />. Such a disc is called a horodisc (cf. also [[Horosphere|Horosphere]]).
+
The set $E ( k , \omega )$ is a closed disc internally tangent to the circle at $\omega$ with centre $( 1 / ( 1 + k ) ) \omega$ and radius $k / ( 1 + k )$. Such a disc is called a horodisc (cf. also [[Horosphere|Horosphere]]).
  
 
In 1920, G. Julia [[#References|[a18]]] identified hypotheses showing how to get the existence of the non-tangential limit at a given boundary point.
 
In 1920, G. Julia [[#References|[a18]]] identified hypotheses showing how to get the existence of the non-tangential limit at a given boundary point.
  
 
==Julia's lemma.==
 
==Julia's lemma.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007041.png" /> be not constant. Suppose that there are points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007043.png" /> on the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007044.png" />, such that for a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007045.png" /> converging to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007046.png" /> the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007047.png" /> converges to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007048.png" /> and
+
Let $F \in \operatorname { Hol } ( \Delta )$ be not constant. Suppose that there are points $\omega$ and $ \eta $ on the boundary $\partial \Delta$, such that for a sequence $\{ z _ { n } \} \subset \Delta$ converging to $\omega$ the sequence $\{ F ( z _ { n } ) \}$ converges to $ \eta $ and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007049.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
\begin{equation} \tag{a4} \frac { 1 - | F ( z _ { n } ) | } { 1 - | z _ { n } | } \rightarrow d ( \omega ) < \infty. \end{equation}
  
 
Then
 
Then
  
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007050.png" />;
+
i) $d ( \omega ) > 0$;
  
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007051.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007052.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007053.png" />;
+
ii) $\phi _ { \eta } ( F ( z ) ) \leq d ( \omega ) \phi _ { \omega } ( z )$, i.e. $F ( E ( k , \omega ) ) \subseteq E ( d ( \omega ) k , \eta )$ for all $k > 0$;
  
iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007054.png" /> exists and is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007055.png" />. Moreover, if the equality in ii) holds for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007056.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007057.png" /> is an automorphism of the disc.
+
iii) $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z )$ exists and is equal to $ \eta $. Moreover, if the equality in ii) holds for some $z \in \Delta$, then $F$ is an automorphism of the disc.
  
 
==Julia–Carathéodory theorem.==
 
==Julia–Carathéodory theorem.==
 
In 1929, C. Carathéodory [[#References|[a7]]] proved that under Julia's hypotheses the derivative also admits a non-tangential limit at the same boundary point.
 
In 1929, C. Carathéodory [[#References|[a7]]] proved that under Julia's hypotheses the derivative also admits a non-tangential limit at the same boundary point.
  
Suppose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007058.png" />. Then the following statements are equivalent:
+
Suppose $F \in \operatorname { Hol } ( \Delta )$. Then the following statements are equivalent:
  
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007059.png" />, where the limit is taken as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007060.png" /> approaches <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007061.png" /> unrestrictedly in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007062.png" />;
+
i) $\lim \inf_{z \rightarrow \omega} ( 1 - | F ( z ) | ) / ( 1 - | z | ) = d ( \omega ) < \infty$, where the limit is taken as $z$ approaches $\omega$ unrestrictedly in $\Delta$;
  
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007063.png" /> exists for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007064.png" />;
+
ii) $\angle \operatorname { lim } _ { z \rightarrow \omega } ( F ( z ) - \eta ) / ( z - \omega ) = \angle F ^ { \prime } ( \omega )$ exists for some $\eta \in \partial \Delta$;
  
iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007065.png" /> exists, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007066.png" />. Moreover,
+
iii) $\angle \operatorname { lim } _ { z \rightarrow \omega } F ^ { \prime } ( z )$ exists, and $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \eta \in \partial \Delta$. Moreover,
  
a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007067.png" /> in i);
+
a) $d ( \omega ) > 0$ in i);
  
b) the boundary points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007068.png" /> in ii) and iii) are the same;
+
b) the boundary points $ \eta $ in ii) and iii) are the same;
  
c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007069.png" />.
+
c) $\angle \operatorname { lim } _ { z \rightarrow \omega } F ^ { \prime } ( z ) = \angle F ^ { \prime } ( \omega ) = \omega \overline { \eta } d ( \omega )$.
  
After appropriate preliminary rotations, one may assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007070.png" />. Thus, these results show that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007071.png" /> has an angular derivative at some boundary point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007072.png" /> such that
+
After appropriate preliminary rotations, one may assume that $\omega = \eta$. Thus, these results show that if $F$ has an angular derivative at some boundary point $\omega$ such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007073.png" /></td> </tr></table>
+
\begin{equation*} \angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega , \text { and } \angle F ^ { \prime } ( \omega ) < 1, \end{equation*}
  
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007074.png" /> cannot have an interior fixed point in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007075.png" />.
+
then $F$ cannot have an interior fixed point in $\Delta$.
  
Now assume only that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007076.png" /> has no interior fixed point in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007077.png" />. The question then is: Does the angular derivative at a certain point on the boundary exist?
+
Now assume only that $F$ has no interior fixed point in $\Delta$. The question then is: Does the angular derivative at a certain point on the boundary exist?
  
 
The affirmative answer was given by J. Wolff [[#References|[a30]]] in 1926.
 
The affirmative answer was given by J. Wolff [[#References|[a30]]] in 1926.
  
 
==Wolff's theorem.==
 
==Wolff's theorem.==
Suppose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007078.png" /> has no fixed point in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007079.png" />. Then there is a unique unimodular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007080.png" /> such that
+
Suppose $F \in \operatorname { Hol } ( \Delta )$ has no fixed point in $\Delta$. Then there is a unique unimodular point $\omega \in \partial \Delta$ such that
  
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007081.png" />;
+
i) $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega$;
  
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007082.png" />;
+
ii) $\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$;
  
iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007083.png" /> exists and is less than or equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007084.png" />.
+
iii) $\angle F ^ { \prime } ( z )$ exists and is less than or equal to $1$.
  
 
The latter assertion can be interpreted as a direct analogue of the Schwarz–Pick lemma (cf. [[Schwarz lemma|Schwarz lemma]]), where the role of the fixed point is taken over by a point on the unit circle. Moreover, this result is the key to all the deeper facts about sequences of iterates.
 
The latter assertion can be interpreted as a direct analogue of the Schwarz–Pick lemma (cf. [[Schwarz lemma|Schwarz lemma]]), where the role of the fixed point is taken over by a point on the unit circle. Moreover, this result is the key to all the deeper facts about sequences of iterates.
Line 85: Line 93:
 
A strengthened version of Julia's lemma was established by P.R. Mercer [[#References|[a21]]], employing techniques for the hyperbolic Poincaré metric (cf. [[Poincaré model|Poincaré model]]).
 
A strengthened version of Julia's lemma was established by P.R. Mercer [[#References|[a21]]], employing techniques for the hyperbolic Poincaré metric (cf. [[Poincaré model|Poincaré model]]).
  
Different generalizations of the Julia–Wolff–Carathéodory theorem for bounded domains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007085.png" /> are known: for the unit ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007086.png" /> ([[#References|[a16]]], [[#References|[a25]]]), for the poly-disc ([[#References|[a17]]], [[#References|[a4]]]), for strongly convex and strongly pseudo-convex domains ([[#References|[a2]]], [[#References|[a3]]]). Also, M. Abate and R. Tauraso [[#References|[a1]]] have described a general framework allowing one to generalize the Julia–Wolff–Carathéodory theorem in terms of the Kobayashi metric (cf. also [[Hyperbolic metric|Hyperbolic metric]]; [[Kobayashi hyperbolicity|Kobayashi hyperbolicity]]) on a bounded domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007087.png" />.
+
Different generalizations of the Julia–Wolff–Carathéodory theorem for bounded domains in $\mathbf{C} ^ { n }$ are known: for the unit ball in $\mathbf{C} ^ { n }$ ([[#References|[a16]]], [[#References|[a25]]]), for the poly-disc ([[#References|[a17]]], [[#References|[a4]]]), for strongly convex and strongly pseudo-convex domains ([[#References|[a2]]], [[#References|[a3]]]). Also, M. Abate and R. Tauraso [[#References|[a1]]] have described a general framework allowing one to generalize the Julia–Wolff–Carathéodory theorem in terms of the Kobayashi metric (cf. also [[Hyperbolic metric|Hyperbolic metric]]; [[Kobayashi hyperbolicity|Kobayashi hyperbolicity]]) on a bounded domain in $\mathbf{C} ^ { n }$.
  
 
For generalizations of Wolff's theorem in the unit ball of a complex Hilbert space, see [[#References|[a13]]] and [[#References|[a14]]].
 
For generalizations of Wolff's theorem in the unit ball of a complex Hilbert space, see [[#References|[a13]]] and [[#References|[a14]]].
Line 91: Line 99:
 
Earlier, V.P. Potapov [[#References|[a23]]] extended Julia's lemma to matrix-valued holomorphic mappings of a complex variable. His results, as well as the Julia–Wolff–Carathéodory theorem, were generalized by K. Fan and T. Ando ([[#References|[a10]]], [[#References|[a11]]] and [[#References|[a5]]]) to operator-valued holomorphic mappings. Also, in these works they extended the Julia–Wolff–Carathéodory theorem to holomorphic mappings of proper contractions on the unit Hilbert ball acting in the sense of functional calculus.
 
Earlier, V.P. Potapov [[#References|[a23]]] extended Julia's lemma to matrix-valued holomorphic mappings of a complex variable. His results, as well as the Julia–Wolff–Carathéodory theorem, were generalized by K. Fan and T. Ando ([[#References|[a10]]], [[#References|[a11]]] and [[#References|[a5]]]) to operator-valued holomorphic mappings. Also, in these works they extended the Julia–Wolff–Carathéodory theorem to holomorphic mappings of proper contractions on the unit Hilbert ball acting in the sense of functional calculus.
  
K. Wlodarczyk [[#References|[a31]]] and P. Mellon [[#References|[a20]]] have presented some more general results in this direction for the holomorphic mappings on the open unit ball of so-called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007089.png" />-algebras, using techniques developed by L.A. Harris [[#References|[a15]]].
+
K. Wlodarczyk [[#References|[a31]]] and P. Mellon [[#References|[a20]]] have presented some more general results in this direction for the holomorphic mappings on the open unit ball of so-called $J ^ { * }$-algebras, using techniques developed by L.A. Harris [[#References|[a15]]].
  
 
For a survey of work in higher dimensions, see [[#References|[a25]]], [[#References|[a14]]], [[#References|[a9]]], [[#References|[a24]]], [[#References|[a20]]], [[#References|[a1]]].
 
For a survey of work in higher dimensions, see [[#References|[a25]]], [[#References|[a14]]], [[#References|[a9]]], [[#References|[a24]]], [[#References|[a20]]], [[#References|[a1]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Abate,  R. Tauraso,  "The Julia–Wolff–Caratheodory theorem(s)"  ''Contemp. Math.'' , '''222'''  (1999)  pp. 161–172</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Abate,  "The Lindelöf principle and the angular derivative in strongly convex domains"  ''J. Anal. Math.'' , '''54'''  (1990)  pp. 189–228</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M. Abate,  "Angular derivatives in strongly pseudoconvex domains" , ''Proc. Symp. Pure Math.'' , '''52/2''' , Amer. Math. Soc.  (1991)  pp. 23–40</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M. Abate,  "The Julia–Wolff–Caratheodory theorem in polydisks"  ''J. Anal. Math.'' , '''74'''  (1998)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  T. Ando,  K. Fan,  "Pick–Julia theorems for operators"  ''Math. Z.'' , '''168'''  (1979)  pp. 23–34</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  R.B. Burckel,  "Iterating analytic self-maps of discs"  ''Amer. Math. Monthly'' , '''88'''  (1981)  pp. 396–407</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  C. Caratheodory,  "Uber die Winkelderivierten von beschränkten Analytischen Funktionen"  ''Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl.''  (1929)  pp. 39–54</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  C. Caratheodory,  "Theory of functions of a complex variable" , Chelsea  (1954)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  C.C. Cowen,  B.D. MacCluer,  "Composition operators on spaces of analytic functions" , CRC  (1995)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  K. Fan,  "Julia's lemma for operators"  ''Math. Ann.'' , '''239'''  (1979)  pp. 241–245</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  K. Fan,  "Iterations of analytic functions of operators"  ''Math. Z.'' , '''179'''  (1982)  pp. 293–298</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  J.L. Goldberg,  "Functions with positive real part in a half-plane"  ''Duke Math. J.'' , '''29'''  (1962)  pp. 335–339</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  K. Goebel,  "Fixed points and invariant domains of holomorphic mappings of the Hilbert ball"  ''Nonlin. Anal.'' , '''6'''  (1982)  pp. 1327–1334</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  K. Goebel,  S. Reich,  "Uniform convexity, hyperbolic geometry and nonexpansive mappings" , M. Dekker  (1984)</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  L.A. Harris,  "Bounded symmetric homogeneous domains in infinite-dimensional space" , ''Lecture Notes in math.'' , '''364''' , Springer  (1974)  pp. 13–40</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top">  M. Hervé,  "Quelques propriétés des applications analytiques d'une boule á <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007090.png" /> dimensions dans elle-même"  ''J. Math. Pures Appl.'' , '''42'''  (1963)  pp. 117–147</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top">  F. Jafari,  "Angular derivatives in polydisks"  ''Indian J. Math.'' , '''35'''  (1993)  pp. 197–212</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top">  G. Julia,  "Extension nouvelle d'un lemme de Schwarz"  ''Acta Math.'' , '''42'''  (1920)  pp. 349–355</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top">  E. Landau,  G. Valiron,  "A deduction from Schwarz's lemma"  ''J. London Math. Soc.'' , '''4'''  (1929)  pp. 162–163</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top">  P. Mellon,  "Another look at results of Wolff and Julia type for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007091.png" />-algebras"  ''J. Math. Anal. Appl.'' , '''198'''  (1996)  pp. 444–457</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top">  P.R. Mercer,  "On a strengthened Schwarz–Pick inequality"  ''J. Math. Anal. Appl.'' , '''234'''  (1999)  pp. 735–739</TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top">  R. Nevanlinna,  "Analytic functions" , Springer  (1970)</TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top">  V.P. Potapov,  "The multiplicative study of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007092.png" />-contractive matrix functions"  ''Amer. Math. Soc. Transl. (2)'' , '''15'''  (1960)  pp. 231–243</TD></TR><TR><TD valign="top">[a24]</TD> <TD valign="top">  S. Reich,  D. Shoikhet,  "The Denjoy–Wolff theorem"  ''Ann. Univ. Mariae Curie–Skłodowska'' , '''51'''  (1997)  pp. 219–240</TD></TR><TR><TD valign="top">[a25]</TD> <TD valign="top">  W. Rudin,  "Function theory on the unit ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007093.png" />" , Springer (1980)</TD></TR><TR><TD valign="top">[a26]</TD> <TD valign="top">  D. Sarason,  "Angular derivatives via Hilbert space"  ''Complex Variables'' , '''10'''  (1988)  pp. 1–10</TD></TR><TR><TD valign="top">[a27]</TD> <TD valign="top">  J. Serrin,  "A note on harmonic functions defined in a half-plane"  ''Duke Math. J.'' , '''23'''  (1956)  pp. 523–526</TD></TR><TR><TD valign="top">[a28]</TD> <TD valign="top">  J.H. Shapiro,  "Composition operators and classical function theory" , Springer  (1993)</TD></TR><TR><TD valign="top">[a29]</TD> <TD valign="top">  G. Valiron,  "Sur l'iteration des fonctions holomorphes dans un demi-plan"  ''Bull. Sci. Math.'' , '''55''' :  2  (1931)  pp. 105–128</TD></TR><TR><TD valign="top">[a30]</TD> <TD valign="top">  J. Wolff,  "Sur une generalisation d'un theoreme de Schwarz"  ''C.R. Acad. Sci.'' , '''182'''  (1926)  pp. 918–920</TD></TR><TR><TD valign="top">[a31]</TD> <TD valign="top">  K. Wlodarczyk,  "Julia's lemma and Wolff's theorem for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007094.png" />-algebras"  ''Proc. Amer. Math. Soc.'' , '''99''' :  3  (1987)  pp. 472–476</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  M. Abate,  R. Tauraso,  "The Julia–Wolff–Caratheodory theorem(s)"  ''Contemp. Math.'' , '''222'''  (1999)  pp. 161–172</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  M. Abate,  "The Lindelöf principle and the angular derivative in strongly convex domains"  ''J. Anal. Math.'' , '''54'''  (1990)  pp. 189–228</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  M. Abate,  "Angular derivatives in strongly pseudoconvex domains" , ''Proc. Symp. Pure Math.'' , '''52/2''' , Amer. Math. Soc.  (1991)  pp. 23–40</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  M. Abate,  "The Julia–Wolff–Caratheodory theorem in polydisks"  ''J. Anal. Math.'' , '''74'''  (1998)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  T. Ando,  K. Fan,  "Pick–Julia theorems for operators"  ''Math. Z.'' , '''168'''  (1979)  pp. 23–34</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  R.B. Burckel,  "Iterating analytic self-maps of discs"  ''Amer. Math. Monthly'' , '''88'''  (1981)  pp. 396–407</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  C. Caratheodory,  "Uber die Winkelderivierten von beschränkten Analytischen Funktionen"  ''Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl.''  (1929)  pp. 39–54</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  C. Caratheodory,  "Theory of functions of a complex variable" , Chelsea  (1954)</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  C.C. Cowen,  B.D. MacCluer,  "Composition operators on spaces of analytic functions" , CRC  (1995)</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  K. Fan,  "Julia's lemma for operators"  ''Math. Ann.'' , '''239'''  (1979)  pp. 241–245</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  K. Fan,  "Iterations of analytic functions of operators"  ''Math. Z.'' , '''179'''  (1982)  pp. 293–298</td></tr><tr><td valign="top">[a12]</td> <td valign="top">  J.L. Goldberg,  "Functions with positive real part in a half-plane"  ''Duke Math. J.'' , '''29'''  (1962)  pp. 335–339</td></tr><tr><td valign="top">[a13]</td> <td valign="top">  K. Goebel,  "Fixed points and invariant domains of holomorphic mappings of the Hilbert ball"  ''Nonlin. Anal.'' , '''6'''  (1982)  pp. 1327–1334</td></tr><tr><td valign="top">[a14]</td> <td valign="top">  K. Goebel,  S. Reich,  "Uniform convexity, hyperbolic geometry and nonexpansive mappings" , M. Dekker  (1984)</td></tr><tr><td valign="top">[a15]</td> <td valign="top">  L.A. Harris,  "Bounded symmetric homogeneous domains in infinite-dimensional space" , ''Lecture Notes in math.'' , '''364''' , Springer  (1974)  pp. 13–40</td></tr>
 +
<tr><td valign="top">[a16]</td> <td valign="top">  M. Hervé,  "Quelques propriétés des applications analytiques d'une boule à $m$ dimensions dans elle-même"  ''J. Math. Pures Appl.'' , '''42'''  (1963)  pp. 117–147</td></tr>
 +
<tr><td valign="top">[a17]</td> <td valign="top">  F. Jafari,  "Angular derivatives in polydisks"  ''Indian J. Math.'' , '''35'''  (1993)  pp. 197–212</td></tr><tr><td valign="top">[a18]</td> <td valign="top">  G. Julia,  "Extension nouvelle d'un lemme de Schwarz"  ''Acta Math.'' , '''42'''  (1920)  pp. 349–355</td></tr><tr><td valign="top">[a19]</td> <td valign="top">  E. Landau,  G. Valiron,  "A deduction from Schwarz's lemma"  ''J. London Math. Soc.'' , '''4'''  (1929)  pp. 162–163</td></tr><tr><td valign="top">[a20]</td> <td valign="top">  P. Mellon,  "Another look at results of Wolff and Julia type for $J ^ { * }$-algebras" ''J. Math. Anal. Appl.'' , '''198'''  (1996)  pp. 444–457</td></tr><tr><td valign="top">[a21]</td> <td valign="top">  P.R. Mercer,  "On a strengthened Schwarz–Pick inequality"  ''J. Math. Anal. Appl.'' , '''234'''  (1999)  pp. 735–739</td></tr><tr><td valign="top">[a22]</td> <td valign="top">  R. Nevanlinna,  "Analytic functions" , Springer  (1970)</td></tr><tr><td valign="top">[a23]</td> <td valign="top">  V.P. Potapov,  "The multiplicative study of $J$-contractive matrix functions"  ''Amer. Math. Soc. Transl. (2)'' , '''15'''  (1960)  pp. 231–243</td></tr><tr><td valign="top">[a24]</td> <td valign="top">  S. Reich,  D. Shoikhet,  "The Denjoy–Wolff theorem"  ''Ann. Univ. Mariae Curie–Skłodowska'' , '''51'''  (1997)  pp. 219–240</td></tr><tr><td valign="top">[a25]</td> <td valign="top">  W. Rudin,  "Function theory on the unit ball in $\mathbf{C} ^ { n }$" , Springer (1980)</td></tr><tr><td valign="top">[a26]</td> <td valign="top">  D. Sarason,  "Angular derivatives via Hilbert space"  ''Complex Variables'' , '''10'''  (1988)  pp. 1–10</td></tr><tr><td valign="top">[a27]</td> <td valign="top">  J. Serrin,  "A note on harmonic functions defined in a half-plane"  ''Duke Math. J.'' , '''23'''  (1956)  pp. 523–526</td></tr><tr><td valign="top">[a28]</td> <td valign="top">  J.H. Shapiro,  "Composition operators and classical function theory" , Springer  (1993)</td></tr><tr><td valign="top">[a29]</td> <td valign="top">  G. Valiron,  "Sur l'itération des fonctions holomorphes dans un demi-plan"  ''Bull. Sci. Math.'' , '''55''' :  2  (1931)  pp. 105–128</td></tr><tr><td valign="top">[a30]</td> <td valign="top">  J. Wolff,  "Sur une généralisation d'un théorème de Schwarz"  ''C.R. Acad. Sci.'' , '''182'''  (1926)  pp. 918–920</td></tr>
 +
<tr><td valign="top">[a31]</td> <td valign="top">  K. Wlodarczyk,  "Julia's lemma and Wolff's theorem for $J ^ { * }$-algebras"  ''Proc. Amer. Math. Soc.'' , '''99''' :  3  (1987)  pp. 472–476</td></tr>
 +
</table>

Latest revision as of 19:35, 27 July 2024

Julia–Carathéodory theorem, Julia–Wolff theorem

A classical statement which combines the celebrated Julia theorem from 1920 [a18], Carathéodory's contribution from 1929 [a7] (see also [a8]), and Wolff's boundary version of the Schwarz lemma from 1926 [a30].

Let $\Delta$ be the open unit disc in the complex plane $\mathbf{C}$, and let $\operatorname{Hol}( \Delta , \Omega )$ be the set of all holomorphic functions on $\Delta$ with values in a domain $\Omega$ in $\mathbf{C}$ (cf. also Analytic function). For the set $\operatorname{Hol}( \Delta , \Delta )$, of holomorphic self-mappings on $\Delta$, one writes $\operatorname { Hol }( \Delta )$; it is a semi-group of holomorphic mappings with respect to composition.

For $\omega$ on the unit circle $\partial \Delta$, the boundary of $\Delta$, and $\alpha > 1$, a non-tangential approach region at $\omega$ is defined by

\begin{equation} \tag{a1} \Gamma ( \omega , \alpha ) = \{ z \in \Delta : | z - \omega | < \alpha ( 1 - | z | ) \}. \end{equation}

The term "non-tangential" refers to the fact that at the point $\omega$, $\Gamma ( \omega , \alpha )$ lies in the sector $S$ (in $\Delta$) that is the region between two straight lines in $\Delta$ meeting at $\omega$ and symmetric about the radius to $\omega$, the boundary curves of $S$ having a corner at $\omega$, with angle less than $\pi$.

A function $f \in \operatorname { Hol } ( \Delta , \mathbf{C} )$ is said to have a non-tangential limit $L$ at $\omega$ if $L = \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ exists in each non-tangential region $\Gamma ( \omega , \alpha )$. In this case one also writes

\begin{equation*} L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z ). \end{equation*}

For $z \in \Delta$ and $\omega \in \partial \Delta$, let

\begin{equation} \tag{a2} \phi _ { \omega } ( z ) = \frac { | z - \omega | ^ { 2 } } { 1 - | z | ^ { 2 } }, \end{equation}

and for $k > 0$, let

\begin{equation} \tag{a3} E ( k , \omega ) = \{ z \in \Delta : \phi _ { \omega } ( z ) \leq k \}. \end{equation}

The set $E ( k , \omega )$ is a closed disc internally tangent to the circle at $\omega$ with centre $( 1 / ( 1 + k ) ) \omega$ and radius $k / ( 1 + k )$. Such a disc is called a horodisc (cf. also Horosphere).

In 1920, G. Julia [a18] identified hypotheses showing how to get the existence of the non-tangential limit at a given boundary point.

Julia's lemma.

Let $F \in \operatorname { Hol } ( \Delta )$ be not constant. Suppose that there are points $\omega$ and $ \eta $ on the boundary $\partial \Delta$, such that for a sequence $\{ z _ { n } \} \subset \Delta$ converging to $\omega$ the sequence $\{ F ( z _ { n } ) \}$ converges to $ \eta $ and

\begin{equation} \tag{a4} \frac { 1 - | F ( z _ { n } ) | } { 1 - | z _ { n } | } \rightarrow d ( \omega ) < \infty. \end{equation}

Then

i) $d ( \omega ) > 0$;

ii) $\phi _ { \eta } ( F ( z ) ) \leq d ( \omega ) \phi _ { \omega } ( z )$, i.e. $F ( E ( k , \omega ) ) \subseteq E ( d ( \omega ) k , \eta )$ for all $k > 0$;

iii) $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z )$ exists and is equal to $ \eta $. Moreover, if the equality in ii) holds for some $z \in \Delta$, then $F$ is an automorphism of the disc.

Julia–Carathéodory theorem.

In 1929, C. Carathéodory [a7] proved that under Julia's hypotheses the derivative also admits a non-tangential limit at the same boundary point.

Suppose $F \in \operatorname { Hol } ( \Delta )$. Then the following statements are equivalent:

i) $\lim \inf_{z \rightarrow \omega} ( 1 - | F ( z ) | ) / ( 1 - | z | ) = d ( \omega ) < \infty$, where the limit is taken as $z$ approaches $\omega$ unrestrictedly in $\Delta$;

ii) $\angle \operatorname { lim } _ { z \rightarrow \omega } ( F ( z ) - \eta ) / ( z - \omega ) = \angle F ^ { \prime } ( \omega )$ exists for some $\eta \in \partial \Delta$;

iii) $\angle \operatorname { lim } _ { z \rightarrow \omega } F ^ { \prime } ( z )$ exists, and $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \eta \in \partial \Delta$. Moreover,

a) $d ( \omega ) > 0$ in i);

b) the boundary points $ \eta $ in ii) and iii) are the same;

c) $\angle \operatorname { lim } _ { z \rightarrow \omega } F ^ { \prime } ( z ) = \angle F ^ { \prime } ( \omega ) = \omega \overline { \eta } d ( \omega )$.

After appropriate preliminary rotations, one may assume that $\omega = \eta$. Thus, these results show that if $F$ has an angular derivative at some boundary point $\omega$ such that

\begin{equation*} \angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega , \text { and } \angle F ^ { \prime } ( \omega ) < 1, \end{equation*}

then $F$ cannot have an interior fixed point in $\Delta$.

Now assume only that $F$ has no interior fixed point in $\Delta$. The question then is: Does the angular derivative at a certain point on the boundary exist?

The affirmative answer was given by J. Wolff [a30] in 1926.

Wolff's theorem.

Suppose $F \in \operatorname { Hol } ( \Delta )$ has no fixed point in $\Delta$. Then there is a unique unimodular point $\omega \in \partial \Delta$ such that

i) $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega$;

ii) $\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$;

iii) $\angle F ^ { \prime } ( z )$ exists and is less than or equal to $1$.

The latter assertion can be interpreted as a direct analogue of the Schwarz–Pick lemma (cf. Schwarz lemma), where the role of the fixed point is taken over by a point on the unit circle. Moreover, this result is the key to all the deeper facts about sequences of iterates.

Generalizations.

There are various versions and proofs of the Julia–Carathéodory theorem (sometimes also called the Julia–Wolff–Carathéodory theorem or Julia–Wolff theorem). For the one-dimensional case, see, for example, [a19], [a29], [a27], [a12], [a26], [a6], [a21] or [a8], [a22], [a28], [a9].

Note that D. Sarason [a26] gave an interesting proof of the Julia–Carathéodory theorem by using Hilbert space constructions for angular derivatives.

A strengthened version of Julia's lemma was established by P.R. Mercer [a21], employing techniques for the hyperbolic Poincaré metric (cf. Poincaré model).

Different generalizations of the Julia–Wolff–Carathéodory theorem for bounded domains in $\mathbf{C} ^ { n }$ are known: for the unit ball in $\mathbf{C} ^ { n }$ ([a16], [a25]), for the poly-disc ([a17], [a4]), for strongly convex and strongly pseudo-convex domains ([a2], [a3]). Also, M. Abate and R. Tauraso [a1] have described a general framework allowing one to generalize the Julia–Wolff–Carathéodory theorem in terms of the Kobayashi metric (cf. also Hyperbolic metric; Kobayashi hyperbolicity) on a bounded domain in $\mathbf{C} ^ { n }$.

For generalizations of Wolff's theorem in the unit ball of a complex Hilbert space, see [a13] and [a14].

Earlier, V.P. Potapov [a23] extended Julia's lemma to matrix-valued holomorphic mappings of a complex variable. His results, as well as the Julia–Wolff–Carathéodory theorem, were generalized by K. Fan and T. Ando ([a10], [a11] and [a5]) to operator-valued holomorphic mappings. Also, in these works they extended the Julia–Wolff–Carathéodory theorem to holomorphic mappings of proper contractions on the unit Hilbert ball acting in the sense of functional calculus.

K. Wlodarczyk [a31] and P. Mellon [a20] have presented some more general results in this direction for the holomorphic mappings on the open unit ball of so-called $J ^ { * }$-algebras, using techniques developed by L.A. Harris [a15].

For a survey of work in higher dimensions, see [a25], [a14], [a9], [a24], [a20], [a1].

References

[a1] M. Abate, R. Tauraso, "The Julia–Wolff–Caratheodory theorem(s)" Contemp. Math. , 222 (1999) pp. 161–172
[a2] M. Abate, "The Lindelöf principle and the angular derivative in strongly convex domains" J. Anal. Math. , 54 (1990) pp. 189–228
[a3] M. Abate, "Angular derivatives in strongly pseudoconvex domains" , Proc. Symp. Pure Math. , 52/2 , Amer. Math. Soc. (1991) pp. 23–40
[a4] M. Abate, "The Julia–Wolff–Caratheodory theorem in polydisks" J. Anal. Math. , 74 (1998)
[a5] T. Ando, K. Fan, "Pick–Julia theorems for operators" Math. Z. , 168 (1979) pp. 23–34
[a6] R.B. Burckel, "Iterating analytic self-maps of discs" Amer. Math. Monthly , 88 (1981) pp. 396–407
[a7] C. Caratheodory, "Uber die Winkelderivierten von beschränkten Analytischen Funktionen" Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl. (1929) pp. 39–54
[a8] C. Caratheodory, "Theory of functions of a complex variable" , Chelsea (1954)
[a9] C.C. Cowen, B.D. MacCluer, "Composition operators on spaces of analytic functions" , CRC (1995)
[a10] K. Fan, "Julia's lemma for operators" Math. Ann. , 239 (1979) pp. 241–245
[a11] K. Fan, "Iterations of analytic functions of operators" Math. Z. , 179 (1982) pp. 293–298
[a12] J.L. Goldberg, "Functions with positive real part in a half-plane" Duke Math. J. , 29 (1962) pp. 335–339
[a13] K. Goebel, "Fixed points and invariant domains of holomorphic mappings of the Hilbert ball" Nonlin. Anal. , 6 (1982) pp. 1327–1334
[a14] K. Goebel, S. Reich, "Uniform convexity, hyperbolic geometry and nonexpansive mappings" , M. Dekker (1984)
[a15] L.A. Harris, "Bounded symmetric homogeneous domains in infinite-dimensional space" , Lecture Notes in math. , 364 , Springer (1974) pp. 13–40
[a16] M. Hervé, "Quelques propriétés des applications analytiques d'une boule à $m$ dimensions dans elle-même" J. Math. Pures Appl. , 42 (1963) pp. 117–147
[a17] F. Jafari, "Angular derivatives in polydisks" Indian J. Math. , 35 (1993) pp. 197–212
[a18] G. Julia, "Extension nouvelle d'un lemme de Schwarz" Acta Math. , 42 (1920) pp. 349–355
[a19] E. Landau, G. Valiron, "A deduction from Schwarz's lemma" J. London Math. Soc. , 4 (1929) pp. 162–163
[a20] P. Mellon, "Another look at results of Wolff and Julia type for $J ^ { * }$-algebras" J. Math. Anal. Appl. , 198 (1996) pp. 444–457
[a21] P.R. Mercer, "On a strengthened Schwarz–Pick inequality" J. Math. Anal. Appl. , 234 (1999) pp. 735–739
[a22] R. Nevanlinna, "Analytic functions" , Springer (1970)
[a23] V.P. Potapov, "The multiplicative study of $J$-contractive matrix functions" Amer. Math. Soc. Transl. (2) , 15 (1960) pp. 231–243
[a24] S. Reich, D. Shoikhet, "The Denjoy–Wolff theorem" Ann. Univ. Mariae Curie–Skłodowska , 51 (1997) pp. 219–240
[a25] W. Rudin, "Function theory on the unit ball in $\mathbf{C} ^ { n }$" , Springer (1980)
[a26] D. Sarason, "Angular derivatives via Hilbert space" Complex Variables , 10 (1988) pp. 1–10
[a27] J. Serrin, "A note on harmonic functions defined in a half-plane" Duke Math. J. , 23 (1956) pp. 523–526
[a28] J.H. Shapiro, "Composition operators and classical function theory" , Springer (1993)
[a29] G. Valiron, "Sur l'itération des fonctions holomorphes dans un demi-plan" Bull. Sci. Math. , 55 : 2 (1931) pp. 105–128
[a30] J. Wolff, "Sur une généralisation d'un théorème de Schwarz" C.R. Acad. Sci. , 182 (1926) pp. 918–920
[a31] K. Wlodarczyk, "Julia's lemma and Wolff's theorem for $J ^ { * }$-algebras" Proc. Amer. Math. Soc. , 99 : 3 (1987) pp. 472–476
How to Cite This Entry:
Julia-Wolff-Carathéodory theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Julia-Wolff-Carath%C3%A9odory_theorem&oldid=23342
This article was adapted from an original article by David Shoikhet (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article