Difference between revisions of "Riemann-Hurwitz formula"
Ulf Rehmann (talk | contribs) m (moved Riemann–Hurwitz formula to Riemann-Hurwitz formula: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | r0819201.png | ||
+ | $#A+1 = 22 n = 0 | ||
+ | $#C+1 = 22 : ~/encyclopedia/old_files/data/R081/R.0801920 Riemann\ANDHurwitz formula, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Hurwitz formula, Hurwitz theorem'' | ''Hurwitz formula, Hurwitz theorem'' | ||
− | A formula that connects the genus and other invariants in a covering of Riemann surfaces (cf. [[Riemann surface|Riemann surface]]). Let | + | A formula that connects the genus and other invariants in a covering of Riemann surfaces (cf. [[Riemann surface|Riemann surface]]). Let $ T $ |
+ | and $ R $ | ||
+ | be closed Riemann surfaces, and let $ f: T \rightarrow R $ | ||
+ | be a surjective holomorphic mapping. Suppose this is an $ m $- | ||
+ | sheeted covering, and suppose that $ f $ | ||
+ | is branched in the points $ Q _ {1} \dots Q _ {s} \in T $ | ||
+ | with multiplicities $ k _ {1} \dots k _ {s} $. | ||
+ | Suppose that $ g = \textrm{ genus } ( T) $ | ||
+ | and $ h = \textrm{ genus } ( R) $. | ||
+ | Then the following (Riemann–Hurwitz) formula holds: | ||
− | + | $$ \tag{* } | |
+ | 2 g - 2 = m( 2h - 2) + \sum _ {i= 1 } ^ { s } ( k _ {i} - 1). | ||
+ | $$ | ||
− | In particular, if | + | In particular, if $ R $ |
+ | is the Riemann sphere, i.e. $ h = \textrm{ genus } ( R) = 0 $, | ||
+ | then | ||
− | + | $$ | |
+ | g = 1 + \sum _ {i= 1 } ^ { s } | ||
+ | \frac{k _ {i} - 1 }{2} | ||
+ | . | ||
+ | $$ | ||
Formula (*) was stated by B. Riemann [[#References|[1]]] and proved by A. Hurwitz [[#References|[2]]]. | Formula (*) was stated by B. Riemann [[#References|[1]]] and proved by A. Hurwitz [[#References|[2]]]. | ||
− | In the case of coverings of complete curves over a field, an analogous formula can be derived in case the covering mapping | + | In the case of coverings of complete curves over a field, an analogous formula can be derived in case the covering mapping $ f $ |
+ | is separable (cf. [[Separable mapping|Separable mapping]]). In that case | ||
− | + | $$ | |
+ | 2g - 2 = m ( 2h- 2) + \mathop{\rm deg} ( \delta ( f ) ) , | ||
+ | $$ | ||
− | where | + | where $ \delta ( f ) $ |
+ | is the different of $ f $. | ||
+ | In this case one speaks of the Riemann–Hurwitz–Hasse formula. In case a branching multiplicity $ k _ {i} $ | ||
+ | is divisible by the characteristic of the base field, one speaks of wild ramification, and the degree of $ \delta ( f ) $ | ||
+ | at that point is larger than $ k _ {i} - 1 $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B. Riemann, "Gesammelte mathematische Werke" , Dover, reprint (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Hurwitz, "Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkte" , ''Mathematische Werke'' , '''1''' , Birkhäuser (1932) pp. 321–383</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''1''' , Springer (1964) {{MR|0173749}} {{ZBL|0135.12101}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Nevanlinna, "Uniformisierung" , Springer (1967) {{MR|0228671}} {{ZBL|0152.27401}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S. Lang, "Introduction to algebraic and Abelian functions" , Addison-Wesley (1972) {{MR|0327780}} {{ZBL|0255.14001}} </TD></TR></table> |
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The different of a mapping | + | The different of a mapping $ f $ |
+ | is the different of the extension of algebraic function fields determined by $ f $. | ||
+ | For the latter notion cf. (the editorial comments to) [[Discriminant|Discriminant]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) pp. 216–219 {{MR|0507725}} {{ZBL|0408.14001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Hasse, "Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei eindlichem Konstantenkörper" ''Reine Angew. Math.'' , '''172''' (1935) pp. 37–54</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H.M. Farkas, I. Kra, "Riemann surfaces" , Springer (1980) pp. Sect. III.6 {{MR|0583745}} {{ZBL|0475.30001}} </TD></TR></table> |
Latest revision as of 08:11, 6 June 2020
Hurwitz formula, Hurwitz theorem
A formula that connects the genus and other invariants in a covering of Riemann surfaces (cf. Riemann surface). Let $ T $ and $ R $ be closed Riemann surfaces, and let $ f: T \rightarrow R $ be a surjective holomorphic mapping. Suppose this is an $ m $- sheeted covering, and suppose that $ f $ is branched in the points $ Q _ {1} \dots Q _ {s} \in T $ with multiplicities $ k _ {1} \dots k _ {s} $. Suppose that $ g = \textrm{ genus } ( T) $ and $ h = \textrm{ genus } ( R) $. Then the following (Riemann–Hurwitz) formula holds:
$$ \tag{* } 2 g - 2 = m( 2h - 2) + \sum _ {i= 1 } ^ { s } ( k _ {i} - 1). $$
In particular, if $ R $ is the Riemann sphere, i.e. $ h = \textrm{ genus } ( R) = 0 $, then
$$ g = 1 + \sum _ {i= 1 } ^ { s } \frac{k _ {i} - 1 }{2} . $$
Formula (*) was stated by B. Riemann [1] and proved by A. Hurwitz [2].
In the case of coverings of complete curves over a field, an analogous formula can be derived in case the covering mapping $ f $ is separable (cf. Separable mapping). In that case
$$ 2g - 2 = m ( 2h- 2) + \mathop{\rm deg} ( \delta ( f ) ) , $$
where $ \delta ( f ) $ is the different of $ f $. In this case one speaks of the Riemann–Hurwitz–Hasse formula. In case a branching multiplicity $ k _ {i} $ is divisible by the characteristic of the base field, one speaks of wild ramification, and the degree of $ \delta ( f ) $ at that point is larger than $ k _ {i} - 1 $.
References
[1] | B. Riemann, "Gesammelte mathematische Werke" , Dover, reprint (1953) |
[2] | A. Hurwitz, "Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkte" , Mathematische Werke , 1 , Birkhäuser (1932) pp. 321–383 |
[3] | A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 1 , Springer (1964) MR0173749 Zbl 0135.12101 |
[4] | R. Nevanlinna, "Uniformisierung" , Springer (1967) MR0228671 Zbl 0152.27401 |
[5] | S. Lang, "Introduction to algebraic and Abelian functions" , Addison-Wesley (1972) MR0327780 Zbl 0255.14001 |
Comments
The different of a mapping $ f $ is the different of the extension of algebraic function fields determined by $ f $. For the latter notion cf. (the editorial comments to) Discriminant.
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2 MR0463157 Zbl 0367.14001 |
[a2] | P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) pp. 216–219 MR0507725 Zbl 0408.14001 |
[a3] | H. Hasse, "Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei eindlichem Konstantenkörper" Reine Angew. Math. , 172 (1935) pp. 37–54 |
[a4] | H.M. Farkas, I. Kra, "Riemann surfaces" , Springer (1980) pp. Sect. III.6 MR0583745 Zbl 0475.30001 |
Riemann-Hurwitz formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riemann-Hurwitz_formula&oldid=22981