Namespaces
Variants
Actions

Difference between revisions of "Hilbert-Schmidt series"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
h0473601.png
 +
$#A+1 = 13 n = 0
 +
$#C+1 = 13 : ~/encyclopedia/old_files/data/H047/H.0407360 Hilbert\ANDSchmidt series
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A series of functions
 
A series of functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h0473601.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
\sum _ {n = 1 } ^  \infty 
 +
 
 +
\frac{( f, \phi _ {n} ) }{\lambda _ {n} }
 +
\phi _ {n} ( x),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h0473602.png" /> is the sequence of all eigen values of a symmetric kernel (cf. [[Kernel of an integral operator|Kernel of an integral operator]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h0473603.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h0473604.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h0473605.png" /> is the corresponding sequence of orthonormal eigen functions, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h0473606.png" /> is the scalar product of an arbitrary square-summable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h0473607.png" /> and the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h0473608.png" />.
+
where $  \{ \lambda _ {n} \} $
 +
is the sequence of all eigen values of a symmetric kernel (cf. [[Kernel of an integral operator|Kernel of an integral operator]]) $  K ( x, s) $,
 +
$  a \leq  x, s \leq  b $,  
 +
$  \{ \phi _ {n} ( x) \} $
 +
is the corresponding sequence of orthonormal eigen functions, while $  ( f, \phi _ {n} ) $
 +
is the scalar product of an arbitrary square-summable function $  f $
 +
and the function $  \phi _ {n} $.
  
The Hilbert–Schmidt theorem: If the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h0473609.png" /> is a square-summable function in two variables, then the series (*) converges in the mean to the function
+
The Hilbert–Schmidt theorem: If the kernel $  K( x, s) $
 +
is a square-summable function in two variables, then the series (*) converges in the mean to the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h04736010.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }  K ( x, s) f ( s)  ds.
 +
$$
  
If there exists a constant C such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h04736011.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h04736012.png" /> the inequality
+
If there exists a constant C such that for all $  x $
 +
from $  ( a, b) $
 +
the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047360/h04736013.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }  | K ( x, s) |  ^ {2}  ds  \leq  C
 +
$$
  
 
is fulfilled, then the Hilbert–Schmidt series converges absolutely and uniformly.
 
is fulfilled, then the Hilbert–Schmidt series converges absolutely and uniformly.
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  I.C. Gohberg,  S. Goldberg,  "Basic operator theory" , Birkhäuser  (1981)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  I.C. Gohberg,  S. Goldberg,  "Basic operator theory" , Birkhäuser  (1981)</TD></TR></table>

Latest revision as of 22:10, 5 June 2020


A series of functions

$$ \tag{* } \sum _ {n = 1 } ^ \infty \frac{( f, \phi _ {n} ) }{\lambda _ {n} } \phi _ {n} ( x), $$

where $ \{ \lambda _ {n} \} $ is the sequence of all eigen values of a symmetric kernel (cf. Kernel of an integral operator) $ K ( x, s) $, $ a \leq x, s \leq b $, $ \{ \phi _ {n} ( x) \} $ is the corresponding sequence of orthonormal eigen functions, while $ ( f, \phi _ {n} ) $ is the scalar product of an arbitrary square-summable function $ f $ and the function $ \phi _ {n} $.

The Hilbert–Schmidt theorem: If the kernel $ K( x, s) $ is a square-summable function in two variables, then the series (*) converges in the mean to the function

$$ \int\limits _ { a } ^ { b } K ( x, s) f ( s) ds. $$

If there exists a constant C such that for all $ x $ from $ ( a, b) $ the inequality

$$ \int\limits _ { a } ^ { b } | K ( x, s) | ^ {2} ds \leq C $$

is fulfilled, then the Hilbert–Schmidt series converges absolutely and uniformly.

Comments

References

[a1] I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981)
How to Cite This Entry:
Hilbert-Schmidt series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert-Schmidt_series&oldid=22577
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article