Namespaces
Variants
Actions

Difference between revisions of "Hardy-Littlewood criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
 
Line 1: Line 1:
 +
{{TEX|done}}
 
''for the convergence of a Fourier series''
 
''for the convergence of a Fourier series''
  
If a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046350/h0463501.png" />-periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046350/h0463502.png" /> is such that
+
If a $2\pi$-periodic function $f$ is such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046350/h0463503.png" /></td> </tr></table>
+
$$f(x_0+h)-f(x_0)=o\left(\frac{1}{\log1/|h|}\right),\quad|h|\to+0,$$
  
and if its Fourier coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046350/h0463504.png" /> satisfy the conditions
+
and if its Fourier coefficients $a_n,b_n$ satisfy the conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046350/h0463505.png" /></td> </tr></table>
+
$$a_n,b_n=O(n^{-\delta}),\quad n\to+\infty,$$
  
for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046350/h0463506.png" />, then the Fourier series of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046350/h0463507.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046350/h0463508.png" /> converges to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046350/h0463509.png" />.
+
for some $\delta>0$, then the Fourier series of $f$ at $x_0$ converges to $f(x_0)$.
  
 
The criterion was established by G.H. Hardy and J.E. Littlewood [[#References|[1]]].
 
The criterion was established by G.H. Hardy and J.E. Littlewood [[#References|[1]]].

Latest revision as of 17:25, 19 September 2014

for the convergence of a Fourier series

If a $2\pi$-periodic function $f$ is such that

$$f(x_0+h)-f(x_0)=o\left(\frac{1}{\log1/|h|}\right),\quad|h|\to+0,$$

and if its Fourier coefficients $a_n,b_n$ satisfy the conditions

$$a_n,b_n=O(n^{-\delta}),\quad n\to+\infty,$$

for some $\delta>0$, then the Fourier series of $f$ at $x_0$ converges to $f(x_0)$.

The criterion was established by G.H. Hardy and J.E. Littlewood [1].

References

[1] G.H. Hardy, J.E. Littlewood, "Some new convergece criteria for Fourier series" J. London. Math. Soc. , 7 (1932) pp. 252–256
[2] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)
How to Cite This Entry:
Hardy-Littlewood criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hardy-Littlewood_criterion&oldid=22547
This article was adapted from an original article by B.I. Golubov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article