Hardy-Littlewood criterion
From Encyclopedia of Mathematics
(Redirected from Hardy–Littlewood criterion)
for the convergence of a Fourier series
If a $2\pi$-periodic function $f$ is such that
$$f(x_0+h)-f(x_0)=o\left(\frac{1}{\log1/|h|}\right),\quad|h|\to+0,$$
and if its Fourier coefficients $a_n,b_n$ satisfy the conditions
$$a_n,b_n=O(n^{-\delta}),\quad n\to+\infty,$$
for some $\delta>0$, then the Fourier series of $f$ at $x_0$ converges to $f(x_0)$.
The criterion was established by G.H. Hardy and J.E. Littlewood [1].
References
[1] | G.H. Hardy, J.E. Littlewood, "Some new convergece criteria for Fourier series" J. London. Math. Soc. , 7 (1932) pp. 252–256 |
[2] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
How to Cite This Entry:
Hardy–Littlewood criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hardy%E2%80%93Littlewood_criterion&oldid=22548
Hardy–Littlewood criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hardy%E2%80%93Littlewood_criterion&oldid=22548