Difference between revisions of "Fejér sum"
Ulf Rehmann (talk | contribs) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | f0383601.png | ||
| + | $#A+1 = 16 n = 0 | ||
| + | $#C+1 = 16 : ~/encyclopedia/old_files/data/F038/F.0308360 Fej\Aeer sum | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
One of the arithmetic means of the partial sums of a Fourier series in the trigonometric system | One of the arithmetic means of the partial sums of a Fourier series in the trigonometric system | ||
| − | + | $$ | |
| + | \sigma _ {n} ( f, x) = \ | ||
| + | { | ||
| + | \frac{1}{n + 1 } | ||
| + | } | ||
| + | \sum _ {k = 0 } ^ { n } | ||
| + | s _ {k} ( f, x) = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| + | { | ||
| + | \frac{a _ {0} }{2} | ||
| + | } + \sum _ {k = 1 } ^ { n } \left ( 1 - { | ||
| + | \frac{k}{n + 1 } | ||
| + | } \right ) ( a _ {k} \cos kx + b _ {k} \sin kx), | ||
| + | $$ | ||
| − | where | + | where $ a _ {k} $ |
| + | and $ b _ {k} $ | ||
| + | are the Fourier coefficients of the function $ f $. | ||
| − | If | + | If $ f $ |
| + | is continuous, then $ \sigma _ {n} ( f, x) $ | ||
| + | converges uniformly to $ f ( x) $; | ||
| + | $ \sigma _ {n} ( f, x) $ | ||
| + | converges to $ f ( x) $ | ||
| + | in the metric of $ L $. | ||
| − | If | + | If $ f $ |
| + | belongs to the class of functions that satisfy a Lipschitz condition of order $ \alpha < 1 $, | ||
| + | then | ||
| − | + | $$ | |
| + | \| f ( x) - \sigma _ {n} ( f, x) \| _ {c} = \ | ||
| + | O \left ( { | ||
| + | \frac{1}{n ^ \alpha } | ||
| + | } \right ) , | ||
| + | $$ | ||
| − | that is, in this case the Fejér sum approximates | + | that is, in this case the Fejér sum approximates $ f $ |
| + | at the rate of the best approximating functions of the indicated class. But Fejér sums cannot provide a high rate of approximation: The estimate | ||
| − | + | $$ | |
| + | \| f ( x) - \sigma _ {n} ( f, x) \| _ {c} = \ | ||
| + | o \left ( { | ||
| + | \frac{1}{n} | ||
| + | } \right ) | ||
| + | $$ | ||
is valid only for constant functions. | is valid only for constant functions. | ||
| Line 23: | Line 69: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Fejér, "Untersuchungen über Fouriersche Reihen" ''Math. Ann.'' , '''58''' (1903) pp. 51–69</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> I.P. Natanson, "Constructive function theory" , '''1–3''' , F. Ungar (1964–1965) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Fejér, "Untersuchungen über Fouriersche Reihen" ''Math. Ann.'' , '''58''' (1903) pp. 51–69</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> I.P. Natanson, "Constructive function theory" , '''1–3''' , F. Ungar (1964–1965) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
See also [[Fejér summation method|Fejér summation method]]. | See also [[Fejér summation method|Fejér summation method]]. | ||
Latest revision as of 19:38, 5 June 2020
One of the arithmetic means of the partial sums of a Fourier series in the trigonometric system
$$ \sigma _ {n} ( f, x) = \ { \frac{1}{n + 1 } } \sum _ {k = 0 } ^ { n } s _ {k} ( f, x) = $$
$$ = \ { \frac{a _ {0} }{2} } + \sum _ {k = 1 } ^ { n } \left ( 1 - { \frac{k}{n + 1 } } \right ) ( a _ {k} \cos kx + b _ {k} \sin kx), $$
where $ a _ {k} $ and $ b _ {k} $ are the Fourier coefficients of the function $ f $.
If $ f $ is continuous, then $ \sigma _ {n} ( f, x) $ converges uniformly to $ f ( x) $; $ \sigma _ {n} ( f, x) $ converges to $ f ( x) $ in the metric of $ L $.
If $ f $ belongs to the class of functions that satisfy a Lipschitz condition of order $ \alpha < 1 $, then
$$ \| f ( x) - \sigma _ {n} ( f, x) \| _ {c} = \ O \left ( { \frac{1}{n ^ \alpha } } \right ) , $$
that is, in this case the Fejér sum approximates $ f $ at the rate of the best approximating functions of the indicated class. But Fejér sums cannot provide a high rate of approximation: The estimate
$$ \| f ( x) - \sigma _ {n} ( f, x) \| _ {c} = \ o \left ( { \frac{1}{n} } \right ) $$
is valid only for constant functions.
Fejér sums were introduced by L. Fejér [1].
References
| [1] | L. Fejér, "Untersuchungen über Fouriersche Reihen" Math. Ann. , 58 (1903) pp. 51–69 |
| [2] | N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian) |
| [3] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
| [4] | I.P. Natanson, "Constructive function theory" , 1–3 , F. Ungar (1964–1965) (Translated from Russian) |
| [5] | V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian) |
Comments
See also Fejér summation method.
Fejér sum. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fej%C3%A9r_sum&oldid=22411