Namespaces
Variants
Actions

Difference between revisions of "Arzelà-Ascoli theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(gather refs)
 
(2 intermediate revisions by 2 users not shown)
Line 2: Line 2:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C. Arzelà,  ''Mem. Accad. Sci. Bologna (5)'' , '''5'''  (1893)  pp. 225–244</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Ascoli,  ''Rend. Accad. Lincei'' , '''18'''  (1883)  pp. 521–586</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  C. Arzelà,  ''Mem. Accad. Sci. Bologna (5)'' , '''5'''  (1893)  pp. 225–244</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  G. Ascoli,  ''Rend. Accad. Lincei'' , '''18'''  (1883)  pp. 521–586</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators. General theory" , '''1''' , Interscience  (1958)</TD></TR>
 +
</table>
  
 +
{{TEX|done}}
  
 
+
[[Category:Functional analysis]]
====Comments====
 
 
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N. Dunford,  J.T. Schwartz,  "Linear operators. General theory" , '''1''' , Interscience  (1958)</TD></TR></table>
 

Latest revision as of 18:33, 11 April 2023

The name of a number of theorems that specify the conditions for the limit of a sequence of continuous functions to be a continuous function. One such condition is the quasi-uniform convergence of the sequence.

References

[1] C. Arzelà, Mem. Accad. Sci. Bologna (5) , 5 (1893) pp. 225–244
[2] G. Ascoli, Rend. Accad. Lincei , 18 (1883) pp. 521–586
[a1] N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958)
How to Cite This Entry:
Arzelà-Ascoli theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Arzel%C3%A0-Ascoli_theorem&oldid=22033
This article was adapted from an original article by P.S. Aleksandrov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article