Difference between revisions of "Arzelà-Ascoli theorem"
From Encyclopedia of Mathematics
Ulf Rehmann (talk | contribs) m (moved Arzelà–Ascoli theorem to Arzela-Ascoli theorem: ascii title) |
(gather refs) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Arzelà, ''Mem. Accad. Sci. Bologna (5)'' , '''5''' (1893) pp. 225–244</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Ascoli, ''Rend. Accad. Lincei'' , '''18''' (1883) pp. 521–586</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> C. Arzelà, ''Mem. Accad. Sci. Bologna (5)'' , '''5''' (1893) pp. 225–244</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> G. Ascoli, ''Rend. Accad. Lincei'' , '''18''' (1883) pp. 521–586</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958)</TD></TR> | ||
+ | </table> | ||
+ | {{TEX|done}} | ||
− | + | [[Category:Functional analysis]] | |
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 18:33, 11 April 2023
The name of a number of theorems that specify the conditions for the limit of a sequence of continuous functions to be a continuous function. One such condition is the quasi-uniform convergence of the sequence.
References
[1] | C. Arzelà, Mem. Accad. Sci. Bologna (5) , 5 (1893) pp. 225–244 |
[2] | G. Ascoli, Rend. Accad. Lincei , 18 (1883) pp. 521–586 |
[a1] | N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) |
How to Cite This Entry:
Arzelà-Ascoli theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Arzel%C3%A0-Ascoli_theorem&oldid=22033
Arzelà-Ascoli theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Arzel%C3%A0-Ascoli_theorem&oldid=22033
This article was adapted from an original article by P.S. Aleksandrov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article