|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | An [[Algebraic variety|algebraic variety]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h0477001.png" /> together with a regular transitive action of an [[Algebraic group|algebraic group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h0477002.png" /> given on it. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h0477003.png" />, then the [[Isotropy group|isotropy group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h0477004.png" /> is closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h0477005.png" />. Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h0477006.png" /> is a closed subgroup of an algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h0477007.png" />, then the set of left cosets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h0477008.png" /> has the structure of an algebraic variety, making it into a homogeneous space of the algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h0477009.png" />, where the natural mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770010.png" /> is regular, separable and has the following universal property: For any morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770011.png" /> constant on cosets, there is a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770012.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770013.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770014.png" /> is any homogeneous space of the algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770016.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770017.png" />, then the natural bijection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770018.png" /> is regular, and if the ground field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770019.png" /> has characteristic 0, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770020.png" /> is biregular (see [[#References|[1]]], [[#References|[3]]]). | + | {{TEX|done}} |
| + | An [[Algebraic variety|algebraic variety]] $ M $ |
| + | together with a regular transitive action of an [[Algebraic group|algebraic group]] $ G $ |
| + | given on it. If $ x \in M $ , |
| + | then the [[Isotropy group|isotropy group]] $ G _{x} $ |
| + | is closed in $ G $ . |
| + | Conversely, if $ H $ |
| + | is a closed subgroup of an algebraic group $ G $ , |
| + | then the set of left cosets $ G /H $ |
| + | has the structure of an algebraic variety, making it into a homogeneous space of the algebraic group $ G $ , |
| + | where the natural mapping $ \pi : \ G \rightarrow G / H $ |
| + | is regular, separable and has the following universal property: For any morphism $ \phi : \ G \rightarrow X $ |
| + | constant on cosets, there is a morphism $ \psi : \ G / H \rightarrow X $ |
| + | such that $ \psi \pi = \phi $ . |
| + | If $ M $ |
| + | is any homogeneous space of the algebraic group $ G $ |
| + | and $ H = G _{x} $ |
| + | for some $ x \in M $ , |
| + | then the natural bijection $ \psi : \ G / H \rightarrow M $ |
| + | is regular, and if the ground field $ K $ |
| + | has characteristic 0, then $ \psi $ |
| + | is biregular (see [[#References|[1]]], [[#References|[3]]]). |
| | | |
− | Suppose that the connected group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770021.png" />, the homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770022.png" /> and the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770023.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770024.png" /> are defined over some subfield <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770025.png" />. Then the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770026.png" />-rational points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770027.png" /> takes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770028.png" /> into itself and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770029.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770030.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770031.png" /> is finite, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770032.png" />, and if moreover the isotropy group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770033.png" /> is connected, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770034.png" /> acts transitively on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770035.png" />. In the general case, the study of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770036.png" />-rational points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770037.png" /> reduces to problems in the theory of [[Galois cohomology|Galois cohomology]] (see [[#References|[2]]]). | + | Suppose that the connected group $ G $ , |
| + | the homogeneous space $ M $ |
| + | and the action of $ G $ |
| + | on $ M $ |
| + | are defined over some subfield $ k \subset K $ . |
| + | Then the group of $ k $ - |
| + | rational points $ G (k) $ |
| + | takes $ M (k) $ |
| + | into itself and $ G (k) _{x} = G _{x} (k) $ |
| + | for $ x \in M (k) $ . |
| + | If $ k $ |
| + | is finite, then $ M (k) \neq \emptyset $ , |
| + | and if moreover the isotropy group $ G _{x} $ |
| + | is connected, then $ G (k) $ |
| + | acts transitively on $ M (k) $ . |
| + | In the general case, the study of the $ k $ - |
| + | rational points in $ M $ |
| + | reduces to problems in the theory of [[Galois cohomology|Galois cohomology]] (see [[#References|[2]]]). |
| | | |
− | A homogeneous space of an algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770038.png" /> is always a smooth quasi-projective variety (see [[#References|[5]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770039.png" /> is an affine algebraic group, then the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770040.png" /> is projective if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770041.png" /> is a [[Parabolic subgroup|parabolic subgroup]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770042.png" /> (see [[#References|[3]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770043.png" /> is reductive, then the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770044.png" /> is affine if and only if the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770045.png" /> is reductive (see [[Matsushima criterion|Matsushima criterion]]). A description is also known of the closed subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770046.png" /> of a linear algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770047.png" /> over an algebraically closed field of characteristic 0 for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770048.png" /> is quasi-affine (see [[#References|[4]]], [[#References|[6]]]). | + | A homogeneous space of an algebraic group $ G $ |
| + | is always a smooth quasi-projective variety (see [[#References|[5]]]). If $ G $ |
| + | is an affine algebraic group, then the variety $ G / H $ |
| + | is projective if and only if $ H $ |
| + | is a [[Parabolic subgroup|parabolic subgroup]] in $ G $ ( |
| + | see [[#References|[3]]]). If $ G $ |
| + | is reductive, then the variety $ G / H $ |
| + | is affine if and only if the subgroup $ H $ |
| + | is reductive (see [[Matsushima criterion|Matsushima criterion]]). A description is also known of the closed subgroups $ H $ |
| + | of a linear algebraic group $ G $ |
| + | over an algebraically closed field of characteristic 0 for which $ G / H $ |
| + | is quasi-affine (see [[#References|[4]]], [[#References|[6]]]). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) {{MR|0181643}} {{ZBL|0143.05901}} {{ZBL|0128.26303}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975) {{MR|0396773}} {{ZBL|0325.20039}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.A. Sukhanov, "A description of observable subgroups of linear algebraic groups" ''Math. USSR-Sb.'' , '''68''' (Forthcoming) ''Mat. Sb.'' , '''137''' : 1 (1988) pp. 90–102</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W. Chow, "On the projective embedding of homogeneous varieties" , ''Algebraic topology; symposium in honour of S. Lefschetz'' , Princeton Univ. Press (1957) pp. 122–128 {{MR|0084851}} {{ZBL|0091.33302}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> G.P. Hochschild, "Basic theory of algebraic groups and Lie algebras" , Springer (1981) {{MR|0620024}} {{ZBL|0589.20025}} </TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) {{MR|0180551}} {{ZBL|0128.26303}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975) {{MR|0396773}} {{ZBL|0325.20039}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.A. Sukhanov, "A description of observable subgroups of linear algebraic groups" ''Math. USSR-Sb.'' , '''68''' (Forthcoming) ''Mat. Sb.'' , '''137''' : 1 (1988) pp. 90–102</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W. Chow, "On the projective embedding of homogeneous varieties" , ''Algebraic topology; symposium in honour of S. Lefschetz'' , Princeton Univ. Press (1957) pp. 122–128 {{MR|0084851}} {{ZBL|0091.33302}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> G.P. Hochschild, "Basic theory of algebraic groups and Lie algebras" , Springer (1981) {{MR|0620024}} {{ZBL|0589.20025}} </TD></TR></table> |
An algebraic variety $ M $
together with a regular transitive action of an algebraic group $ G $
given on it. If $ x \in M $ ,
then the isotropy group $ G _{x} $
is closed in $ G $ .
Conversely, if $ H $
is a closed subgroup of an algebraic group $ G $ ,
then the set of left cosets $ G /H $
has the structure of an algebraic variety, making it into a homogeneous space of the algebraic group $ G $ ,
where the natural mapping $ \pi : \ G \rightarrow G / H $
is regular, separable and has the following universal property: For any morphism $ \phi : \ G \rightarrow X $
constant on cosets, there is a morphism $ \psi : \ G / H \rightarrow X $
such that $ \psi \pi = \phi $ .
If $ M $
is any homogeneous space of the algebraic group $ G $
and $ H = G _{x} $
for some $ x \in M $ ,
then the natural bijection $ \psi : \ G / H \rightarrow M $
is regular, and if the ground field $ K $
has characteristic 0, then $ \psi $
is biregular (see [1], [3]).
Suppose that the connected group $ G $ ,
the homogeneous space $ M $
and the action of $ G $
on $ M $
are defined over some subfield $ k \subset K $ .
Then the group of $ k $ -
rational points $ G (k) $
takes $ M (k) $
into itself and $ G (k) _{x} = G _{x} (k) $
for $ x \in M (k) $ .
If $ k $
is finite, then $ M (k) \neq \emptyset $ ,
and if moreover the isotropy group $ G _{x} $
is connected, then $ G (k) $
acts transitively on $ M (k) $ .
In the general case, the study of the $ k $ -
rational points in $ M $
reduces to problems in the theory of Galois cohomology (see [2]).
A homogeneous space of an algebraic group $ G $
is always a smooth quasi-projective variety (see [5]). If $ G $
is an affine algebraic group, then the variety $ G / H $
is projective if and only if $ H $
is a parabolic subgroup in $ G $ (
see [3]). If $ G $
is reductive, then the variety $ G / H $
is affine if and only if the subgroup $ H $
is reductive (see Matsushima criterion). A description is also known of the closed subgroups $ H $
of a linear algebraic group $ G $
over an algebraically closed field of characteristic 0 for which $ G / H $
is quasi-affine (see [4], [6]).
References
[1] | A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201 |
[2] | J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) MR0180551 Zbl 0128.26303 |
[3] | J.E. Humphreys, "Linear algebraic groups" , Springer (1975) MR0396773 Zbl 0325.20039 |
[4] | A.A. Sukhanov, "A description of observable subgroups of linear algebraic groups" Math. USSR-Sb. , 68 (Forthcoming) Mat. Sb. , 137 : 1 (1988) pp. 90–102 |
[5] | W. Chow, "On the projective embedding of homogeneous varieties" , Algebraic topology; symposium in honour of S. Lefschetz , Princeton Univ. Press (1957) pp. 122–128 MR0084851 Zbl 0091.33302 |
[6] | G.P. Hochschild, "Basic theory of algebraic groups and Lie algebras" , Springer (1981) MR0620024 Zbl 0589.20025 |