|
|
(3 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| | | |
− | {{TEX|want}} | + | {{MSC|20|15}} |
| + | {{TEX|done}} |
| | | |
− | The group of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g0436801.png" /> invertible matrices over an associative ring (cf. [[Associative rings and algebras|Associative rings and algebras]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g0436802.png" /> with a unit; the usual symbols are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g0436803.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g0436804.png" />. The general linear group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g0436805.png" /> can also be defined as the automorphism group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g0436806.png" /> of the free right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g0436807.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g0436808.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g0436809.png" /> generators.
| |
| | | |
− | In research on the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368010.png" /> its normal structure is of considerable interest. The centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368011.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368012.png" /> consists of scalar matrices with entries from the centre of the ring (cf. [[Centre of a ring|Centre of a ring]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368013.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368014.png" /> is commutative one defines the [[Special linear group|special linear group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368015.png" />, which consists of matrices with determinant 1. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368016.png" /> is a field, the [[Commutator subgroup|commutator subgroup]] of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368017.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368018.png" /> (apart from the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368020.png" />), and any [[Normal subgroup|normal subgroup]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368021.png" /> is either contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368022.png" /> or contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368023.png" />. In particular, the projective special linear group
| + | The general linear group of degree $n$ is |
| + | the group of all $(n\times n)$ invertible matrices over an associative ring (cf. |
| + | [[Associative rings and algebras|Associative rings and algebras]]) $K$ |
| + | with a unit; the usual symbols are $\def\GL{\textrm{GL}} \GL_n(K)$ or $\GL(n,K)$. The general linear |
| + | group $\GL(n,K)$ can also be defined as the automorphism group $\textrm{Aut}_K(V)$ of the |
| + | free right $K$-module $V$ with $n$ generators. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368024.png" /></td> </tr></table>
| + | In research on the group $\GL(n,K)$ its normal structure is of considerable |
| + | interest. The centre $Z_n$ of the group $\GL(n,K)$ consists of scalar matrices |
| + | with entries from the centre of the ring (cf. |
| + | [[Centre of a ring|Centre of a ring]]) $K$. When $K$ is commutative |
| + | one defines the |
| + | [[Special linear group|special linear group]] $\def\SL{\textrm{SL}} \SL(n,K)$, which consists of |
| + | matrices with determinant 1. When $K$ is a field, the |
| + | [[Commutator subgroup|commutator subgroup]] of the group $\GL(n,K)$ coincides |
| + | with $\SL(n,K)$ (apart from the case $n=2$, $|K| = 2$), and any |
| + | [[Normal subgroup|normal subgroup]] of $\GL(n,K)$ is either contained in $Z_n$ |
| + | or contains $\SL(n,K)$. In particular, the projective special linear group |
| | | |
− | is a simple group (apart from the cases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368026.png" />). | + | $$\def\PSL{\textrm{PSL}} \PSL(n,K) = \SL(n,K)/\SL(n,K)\cap Z_n$$ |
| + | is a simple group (apart from the cases $n=2$, $|K|=2,3$). |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368027.png" /> is a [[Skew-field|skew-field]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368028.png" />, any normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368029.png" /> is either contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368030.png" /> or contains the commutator subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368031.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368032.png" /> generated by transvections (cf. [[Transvection|Transvection]]), and the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368033.png" /> is simple. Also, there exists a natural isomorphism | + | If $K$ is a |
| + | [[Skew-field|skew-field]] and $n>1$, any normal subgroup of $\GL(n,K)$ is |
| + | either contained in $Z_n$ or contains the commutator subgroup $\SL^+(n,K)$ of $\GL(n,K)$ |
| + | generated by transvections (cf. |
| + | [[Transvection|Transvection]]), and the quotient group $\SL^+(n,K)/\SL^+(n,K)\cap Z_n$ is |
| + | simple. Also, there exists a natural isomorphism |
| + | $$\GL(n,K)/\SL^+(n,K) \simeq K^*/[K^*,K^*],$$ |
| + | where $K^*$ is |
| + | the multiplicative group of the skew-field $K$. If $K$ is |
| + | finite-dimensional over its centre $k$, then the role of $\SL(n,K)$ is played |
| + | by the group of all matrices from $\GL(n,K)$ with reduced norm 1. The groups |
| + | $\SL(n,K)$ and $\SL^+(n,K)$ do not always coincide, although this is so if $K$ is a |
| + | [[global field]] (see [[Kneser–Tits hypothesis]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368034.png" /></td> </tr></table>
| + | The study of the normal structure of general linear groups over a ring |
| + | $K$ is associated with |
| + | [[Algebraic K-theory|algebraic $K$-theory]]. The group $\GL(n,K)$ over a |
| + | general ring $K$ may contain numerous normal subgroups. For example, |
| + | if $K$ is a commutative ring without zero divisors and with a finite |
| + | number of generators, then $\GL(n,K)$ is a |
| + | [[Residually-finite group|residually-finite group]], i.e. for each |
| + | element $g$ there exists a normal subgroup $N_g$ of finite index not |
| + | containing $g$. In the case $K=\Z$, the description of the normal |
| + | subgroups of $\GL(n,\Z)$ is in fact equivalent to the |
| + | [[Congruence subgroup problem|congruence subgroup problem]] for $\SL(n,\Z)$, since |
| + | $$[\GL(n,\Z):\SL(n,\Z)] = 2,$$ |
| + | and any |
| + | non-scalar normal subgroup of the group $\SL(n,\Z)$ for $n>2$ is a |
| + | [[Congruence subgroup|congruence subgroup]]. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368035.png" /> is the multiplicative group of the skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368036.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368037.png" /> is finite-dimensional over its centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368038.png" />, then the role of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368039.png" /> is played by the group of all matrices from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368040.png" /> with reduced norm 1. The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368042.png" /> do not always coincide, although this is so if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368043.png" /> is a global field (see [[Kneser–Tits hypothesis|Kneser–Tits hypothesis]]).
| + | There is a deep analogy between the structure of general linear groups |
− | | + | and that of other classical groups. This analogy extends also to |
− | The study of the normal structure of general linear groups over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368044.png" /> is associated with [[Algebraic K-theory|algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368045.png" />-theory]]. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368046.png" /> over a general ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368047.png" /> may contain numerous normal subgroups. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368048.png" /> is a commutative ring without zero divisors and with a finite number of generators, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368049.png" /> is a [[Residually-finite group|residually-finite group]], i.e. for each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368050.png" /> there exists a normal subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368051.png" /> of finite index not containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368052.png" />. In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368053.png" />, the description of the normal subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368054.png" /> is in fact equivalent to the [[Congruence problem|congruence problem]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368055.png" />, since
| + | simple algebraic groups and Lie groups. |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368056.png" /></td> </tr></table>
| |
− | | |
− | and any non-scalar normal subgroup of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368057.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368058.png" /> is a [[Congruence subgroup|congruence subgroup]].
| |
− | | |
− | There is a deep analogy between the structure of general linear groups and that of other classical groups. This analogy extends also to simple algebraic groups and Lie groups. | |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Artin, "Geometric algebra" , Interscience (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H. Bass, "Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043680/g04368059.png" />-theory" , Benjamin (1968)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Ar}}||valign="top"| E. Artin, "Geometric algebra", Interscience (1957) {{MR|0082463}} {{ZBL|0077.02101}} |
| + | |- |
| + | |valign="top"|{{Ref|Ba}}||valign="top"| H. Bass, "Algebraic K-theory", Benjamin (1968) {{MR|0249491}} {{ZBL|0174.30302}} |
| + | |- |
| + | |valign="top"|{{Ref|Di}}||valign="top"| J.A. Dieudonné, "La géométrie des groupes classiques", Springer (1955) {{MR|0072144}} {{ZBL|0067.26104}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 20-XX Secondary: 15-XX [MSN][ZBL]
The general linear group of degree $n$ is
the group of all $(n\times n)$ invertible matrices over an associative ring (cf.
Associative rings and algebras) $K$
with a unit; the usual symbols are $\def\GL{\textrm{GL}} \GL_n(K)$ or $\GL(n,K)$. The general linear
group $\GL(n,K)$ can also be defined as the automorphism group $\textrm{Aut}_K(V)$ of the
free right $K$-module $V$ with $n$ generators.
In research on the group $\GL(n,K)$ its normal structure is of considerable
interest. The centre $Z_n$ of the group $\GL(n,K)$ consists of scalar matrices
with entries from the centre of the ring (cf.
Centre of a ring) $K$. When $K$ is commutative
one defines the
special linear group $\def\SL{\textrm{SL}} \SL(n,K)$, which consists of
matrices with determinant 1. When $K$ is a field, the
commutator subgroup of the group $\GL(n,K)$ coincides
with $\SL(n,K)$ (apart from the case $n=2$, $|K| = 2$), and any
normal subgroup of $\GL(n,K)$ is either contained in $Z_n$
or contains $\SL(n,K)$. In particular, the projective special linear group
$$\def\PSL{\textrm{PSL}} \PSL(n,K) = \SL(n,K)/\SL(n,K)\cap Z_n$$
is a simple group (apart from the cases $n=2$, $|K|=2,3$).
If $K$ is a
skew-field and $n>1$, any normal subgroup of $\GL(n,K)$ is
either contained in $Z_n$ or contains the commutator subgroup $\SL^+(n,K)$ of $\GL(n,K)$
generated by transvections (cf.
Transvection), and the quotient group $\SL^+(n,K)/\SL^+(n,K)\cap Z_n$ is
simple. Also, there exists a natural isomorphism
$$\GL(n,K)/\SL^+(n,K) \simeq K^*/[K^*,K^*],$$
where $K^*$ is
the multiplicative group of the skew-field $K$. If $K$ is
finite-dimensional over its centre $k$, then the role of $\SL(n,K)$ is played
by the group of all matrices from $\GL(n,K)$ with reduced norm 1. The groups
$\SL(n,K)$ and $\SL^+(n,K)$ do not always coincide, although this is so if $K$ is a
global field (see Kneser–Tits hypothesis).
The study of the normal structure of general linear groups over a ring
$K$ is associated with
algebraic $K$-theory. The group $\GL(n,K)$ over a
general ring $K$ may contain numerous normal subgroups. For example,
if $K$ is a commutative ring without zero divisors and with a finite
number of generators, then $\GL(n,K)$ is a
residually-finite group, i.e. for each
element $g$ there exists a normal subgroup $N_g$ of finite index not
containing $g$. In the case $K=\Z$, the description of the normal
subgroups of $\GL(n,\Z)$ is in fact equivalent to the
congruence subgroup problem for $\SL(n,\Z)$, since
$$[\GL(n,\Z):\SL(n,\Z)] = 2,$$
and any
non-scalar normal subgroup of the group $\SL(n,\Z)$ for $n>2$ is a
congruence subgroup.
There is a deep analogy between the structure of general linear groups
and that of other classical groups. This analogy extends also to
simple algebraic groups and Lie groups.
References