|
|
(6 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | The polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l1301201.png" /> (cf. [[#References|[a1]]] and [[#References|[a5]]]) given by
| + | {{MSC|11B39,11K99,60C05}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l1301202.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
| + | The polynomials $V_n(x)$ (cf. |
| + | {{Cite|BeHo}} and |
| + | {{Cite|Lu}}) given by |
| + | $$\left.\begin{align*}V_0(x) &= 2,\\ |
| + | V_1(x) &= x,\\ V_n(x) &= x V_{n-1}(x)+V_{n-2}(x),\quad n = 2,3,\dots |
| + | \end{align*}\quad\right\}\tag{a1}$$ |
| + | They reduce to the [[Lucas numbers]] |
| + | $L_n$ for $x=1$, and they satisfy several identities, which may be easily |
| + | proved by induction, e.g.: |
| + | \begin{alignat*}{1} |
| + | &V_{-n}(x) &=\ & (-1)^nV_n(x);\tag{a2}\\ |
| + | &V_{m+n}(x) &=& V_m(x)V_n(x) - (-1)^nV_{m-n}(x);\tag{a3}\\ |
| + | &V_{2n}(x) &=& V_n^{\;2}(x)-2(-1)^n;\tag{a4}\\ |
| + | &V_{2n+1}(x)\ &=& V_{n+1}(x)V_n(x)-(-1)^nx;\tag{a5}\\ |
| + | &U_{2n}(x) &=& U_n(x)V_n(x),\tag{a6} |
| + | \end{alignat*} |
| + | where $U_m(x)$ denote the |
| + | [[Fibonacci polynomials]]; |
| + | $$V_n(x) = \alpha^n(x)+\beta^n(x),\tag{a7}$$ |
| + | where |
| + | $$\alpha(x) = \frac{x+(x^2+4)^{1/2}}{2},\quad |
| + | \beta(x) = \frac{x-(x^2+4)^{1/2}}{2},$$ |
| + | so |
| + | that $\alpha(x) + \beta(x) = x$ and $\alpha(x)\beta(x) = -1$; and |
| + | $$V_n(x) = \sum_{j=0}^{[n/2]} \frac{n}{n-j}\; |
| + | \frac{(n-j)!}{j!(n-2j)!}\; x^{n-2j},\quad n=1,2,\dots,\tag{a8} |
| + | $$ |
| + | where $[y]$ denotes the greatest integer in $y$. |
| | | |
− | They reduce to the Lucas numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l1301203.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l1301204.png" />, and they satisfy several identities, which may be easily proved by induction, e.g.:
| + | The Lucas polynomials are related to the |
| + | [[Chebyshev polynomials]] $T_n(x) = \cos(n\theta)$, $\cos(\theta) = x$, by |
| + | $$V_n(x) = 2i^{-n} T_n\Big(\frac{ix}{2}\Big),\; i = (-1)^{1/2}.\tag{a9}$$ |
| + | J. Riordan |
| + | {{Cite|Ri}} considered the polynomials $h_n(x) = i^{-n}V_n(ix)$ and the Lucas-type |
| + | polynomials |
| + | $$L_n(x) = \sum_{j=0}^{[n/2]} \frac{n}{n-j}\; \frac{(n-j)!}{j!(n-2j)!}\; x^{n-j} = x^{n/2}V_n(x^{1/2}),\; n = 1,2,\dots,\tag{a10}$$ |
| + | in a derivation of Chebyshev-type pairs of inverse |
| + | relations. V.E. Hoggatt Jr. and M. Bicknell |
| + | {{Cite|HoBi}} found the roots of $V_n(x)$. These are $x_j = 2i\cos((2j+1)\pi/2n)$, |
| + | $j=1,\dots,n-1$. Bicknell |
| + | {{Cite|Bi}} showed that $V_m(x)$ divides $V_n(x)$ if and only if $n$ is |
| + | an odd multiple of $m$. G.E. Bergum and Hoggatt Jr. introduced in |
| + | {{Cite|BeHo}} the bivariate Lucas polynomials $V_n(x,y)$ by the |
| + | recursion |
| + | $$\left.\begin{align*} |
| + | V_0(x,y) &= 2,\\ |
| + | V_1(x,y) &= x,\\ |
| + | V_n(x,y) &= x V_{n-1}(x,y)+ y V_{n-2}(x,y),\quad n = 2,3,\ldots |
| + | \end{align*}\right\rbrace\tag{a11}$$ |
| + | generalized (a7) for $V_n(x,y)$, and showed that the $V_n(x,y)$ are |
| + | irreducible polynomials over the rational numbers if and only if $n=2^k$ |
| + | for some positive integer (cf. also |
| + | [[Irreducible polynomial|Irreducible polynomial]]). The formula |
| + | $$V_n(x,y) = \sum_{j=0}^{[n/2]} \frac{n}{n-j}\; \frac{(n-j)!}{j!(n-2j)!} \; |
| + | x^{n-2j}y^j,\; n = 1,2,\dots,\tag{a12}$$ |
| + | which may be derived by induction on $n$ or by expanding the |
| + | [[Generating function|generating function]] of $V_n(x,y)$, generalizes (a8). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l1301205.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
| + | Ch.A. Charalambides |
| + | {{Cite|Ch}} introduced and studied the Lucas and Lucas-type |
| + | polynomials of order $k$, $V_n^{\;(k)}(x)$ and $L_n^{\;(k)}(x)$. The Lucas-type polynomials of |
| + | order $k$ satisfy the recurrence |
| + | $$\left.\begin{alignat*}{1}L_1^{\;(k)}(x) &= x,\\ |
| + | L_n^{\;(k)}(x) &= x\Big(n+\sum_{j=1}^{n-1}L_{n-j}^{\;(k)}(x)\Big),\; & n = 2,\dots,k, \\ |
| + | L_n^{\;(k)}(x) &= x\sum_{j=1}^k L_{n-j}^{\;(k)}(x),\; & n = k+1,k+2,\dots |
| + | \end{alignat*}\right\}\tag{a13}$$ |
| + | These polynomials have the |
| + | binomial and multinomial expansions |
| + | $$\begin{alignat*}{1}L_n^{\;(k)}(x) &= -1 + |
| + | \sum_{j=0}^{[n/(k+1)]}(-1)^j\frac{n}{n-jk}\;\frac{(n-jk)!}{j!(n-jk-j)!}x^j(1+x)^{n-jk-j}\\ |
| + | &=\sum \frac{n_1+2n_2+\cdots+kn_k}{n_1+\cdots+n_k}\;\frac{(n_1+\cdots+n_k)!}{n_1!\cdots n_k!} x^{n_1+\cdots+n_k},\end{alignat*}\tag{a14} $$ |
| + | where the second summation is taken over all non-negative |
| + | integers $n_1,\dots,n_k$ such that $n_1+2n_2+\cdots +kn_k = n$, and they are related to the Fibonacci-type |
| + | polynomials of order $k$ (cf. |
| + | {{Cite|Ph}} and |
| + | {{Cite|PhGePh2}} and |
| + | [[Fibonacci polynomials|Fibonacci polynomials]]), $F_n^{\;(k)}(x)$, by |
| + | $$L_n^{\;(k)}(x) = x \sum_{j=1}^{\min\{n,k\}} jF_{n-j+1}^{\;(k)}(x).\tag{a15}$$ |
| + | Furthermore, |
| + | $$\begin{align*}V_n^{\;(k)}(x) &= x^{-n} L_n^{\;(k)}(x^k)\\ |
| + | &= \sum_{j=1}^{\min\{n,k\}} jx^{k-j+1}U_{n-j+1}^{\;(k)}(x),\; n=1,2,\dots,\; k=2,3,\dots,\end{align*}\tag{a16}$$ |
| + | where the $U_n^{\;(k)}(x)$ are the Fibonacci polynomials of order $k$ (cf. |
| + | {{Cite|PhGePh}}). Charalambides |
| + | {{Cite|Ch}} showed that the reliability of a circular |
| + | [[Consecutive k out of n-system|consecutive $k$-out-of-$n$: |
| + | $F$-system]], $R_c(p; k,n)$, whose components function independently with |
| + | probability $p$ (and $q = 1-p$) is given by |
| + | $$\begin{align*}R_c(p; k,n) &= q^n L_n^{\;(k)}\Big(\frac{p}{q}\Big)\\ |
| + | &= -q^n + \sum_{j=0}^{[n/(k+1)]}(-1)^j\frac{n}{n-jk}\; |
| + | \frac{(n-jk)!}{j!(n-jk-j)!}p^jq^{jk}.\end{align*}\tag{a17}$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l1301206.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
| + | ====References==== |
− | | + | {| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l1301207.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
| + | |- |
− | | + | |valign="top"|{{Ref|BeHo}}||valign="top"| G.E. Bergum, V.E. Hoggatt, Jr., "Irreducibility of Lucas and generalized Lucas polynomials" ''Fibonacci Quart.'', '''12''' (1974) pp. 95–100 {{MR|0349581}} {{ZBL|0277.12002}} |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l1301208.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
| + | |- |
− | | + | |valign="top"|{{Ref|Bi}}||valign="top"| M. Bicknell, "A primer for the Fibonacci numbers. VII" ''Fibonacci Quart.'', '''8''' (1970) pp. 407–420 |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><math>U_{2n}(x)=U_n(x)V_n(x),\,</math></td> <td valign="top" style="width:5%;text-align:right;">(a6)</td></tr></table>
| + | |- |
− | | + | |valign="top"|{{Ref|Ch}}||valign="top"| Ch.A. Charalambides, "Lucas numbers and polynomials of order $k$ and the length of the longest circular success run" ''Fibonacci Quart.'', '''29''' (1991) pp. 290–297 {{MR|1131401}} {{ZBL|0745.11014}} |
− | | + | |- |
− | | + | |valign="top"|{{Ref|HoBi}}||valign="top"| V.E. Hoggatt Jr., M. Bicknell, "Roots of Fibonacci polynomials" ''Fibonacci Quart.'', '''11''' (1973) pp. 271–274 {{MR|0323700}} {{ZBL|0272.33004}} |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012010.png" /> denote the [[Fibonacci polynomials|Fibonacci polynomials]];
| + | |- |
− | | + | |valign="top"|{{Ref|Lu}}||valign="top"| E. Lucas, "Theorie de fonctions numeriques simplement periodiques" ''Amer. J. Math.'', '''1''' (1878) pp. 184–240; 289–321 {{MR|1505176}} {{MR|1505164}} {{MR|1505161}} |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a7)</td></tr></table>
| + | |- |
− | | + | |valign="top"|{{Ref|Ph}}||valign="top"| A.N. Philippou, "Distributions and Fibonacci polynomials of order $k$, longest runs, and reliability of consecutive-$k$-out-of-$n$: $F$ systems" A.N. Philippou (ed.) G.E. Bergum (ed.) A.F. Horadam (ed.), ''Fibonacci Numbers and Their Applications'', Reidel (1986) pp. 203–227 {{MR|0857826}} {{ZBL|0602.60023}} |
− | where
| + | |- |
− | | + | |valign="top"|{{Ref|PhGePh}}||valign="top"| A.N. Philippou, C. Georghiou, G.N. Philippou, "Fibonacci polynomials of order $k$, multinomial expansions and probability" ''Internat. J. Math. Math. Sci.'', '''6''' (1983) pp. 545–550 {{MR|0712573}} {{ZBL|0524.10008}} |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012012.png" /></td> </tr></table>
| + | |- |
− | | + | |valign="top"|{{Ref|PhGePh2}}||valign="top"| A.N. Philippou, C. Georghiou, G.N. Philippou, "Fibonacci-type polynomials of order $k$ with probability applications" ''Fibonacci Quart.'', '''23''' (1985) pp. 100–105 {{MR|0797126}} {{ZBL|0563.10014}} |
− | so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012013.png" />; and
| + | |- |
− | | + | |valign="top"|{{Ref|Ri}}||valign="top"| J. Riordan, "Combinatorial Identities", Wiley (1968) {{MR|0231725}} {{ZBL|0194.00502}} |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a8)</td></tr></table>
| + | |- |
− | | + | |} |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012015.png" /></td> </tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012016.png" /> denotes the greatest integer in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012017.png" />.
| |
− | | |
− | The Lucas polynomials are related to the [[Chebyshev polynomials|Chebyshev polynomials]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012019.png" />, by
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012020.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a9)</td></tr></table>
| |
− | | |
− | J. Riordan [[#References|[a9]]] considered the polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012021.png" /> and the Lucas-type polynomials
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012022.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a10)</td></tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012023.png" /></td> </tr></table>
| |
− | | |
− | in a derivation of Chebyshev-type pairs of inverse relations. V.E. Hoggatt Jr. and M. Bicknell [[#References|[a4]]] found the roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012024.png" />. These are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012026.png" />. Bicknell [[#References|[a2]]] showed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012027.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012028.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012029.png" /> is an odd multiple of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012030.png" />. G.E. Bergum and Hoggatt Jr. introduced in [[#References|[a1]]] the bivariate Lucas polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012031.png" /> by the recursion
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012032.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a11)</td></tr></table>
| |
− | | |
− | generalized (a7) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012033.png" />, and showed that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012034.png" /> are irreducible polynomials over the rational numbers if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012035.png" /> for some positive integer (cf. also [[Irreducible polynomial|Irreducible polynomial]]). The formula
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012036.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a12)</td></tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012037.png" /></td> </tr></table>
| |
− | | |
− | which may be derived by induction on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012038.png" /> or by expanding the [[Generating function|generating function]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012039.png" />, generalizes (a8).
| |
− | | |
− | Ch.A. Charalambides [[#References|[a3]]] introduced and studied the Lucas and Lucas-type polynomials of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012042.png" />. The Lucas-type polynomials of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012044.png" /> satisfy the recurrence
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012045.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a13)</td></tr></table>
| |
− | | |
− | These polynomials have the binomial and multinomial expansions
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012046.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a14)</td></tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012047.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012048.png" /></td> </tr></table>
| |
− | | |
− | where the second summation is taken over all non-negative integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012049.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012050.png" />, and they are related to the Fibonacci-type polynomials of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012051.png" /> (cf. [[#References|[a6]]] and [[#References|[a8]]] and [[Fibonacci polynomials|Fibonacci polynomials]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012052.png" />, by
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012053.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a15)</td></tr></table>
| |
− | | |
− | Furthermore,
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012054.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a16)</td></tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012055.png" /></td> </tr></table>
| |
| | | |
− | where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012056.png" /> are the Fibonacci polynomials of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012057.png" /> (cf. [[#References|[a7]]]). Charalambides [[#References|[a3]]] showed that the reliability of a circular [[Consecutive k out of n-system|consecutive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012058.png" />-out-of-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012059.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012060.png" />-system]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012061.png" />, whose components function independently with probability <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012062.png" /> is given by
| + | ====Comments==== |
− | | + | The Lucas polynomials $V_n(x)$ are a special case of the [[Dickson polynomial]]s $D_n(x,a)$ by taking $a$ to be $-1$. |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012063.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a17)</td></tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012064.png" /></td> </tr></table>
| |
− | | |
− | ====References==== | |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.E. Bergum, V.E. Hoggatt, Jr., "Irreducibility of Lucas and generalized Lucas polynomials" ''Fibonacci Quart.'' , '''12''' (1974) pp. 95–100</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Bicknell, "A primer for the Fibonacci numbers VII" ''Fibonacci Quart.'' , '''8''' (1970) pp. 407–420</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> Ch.A. Charalambides, "Lucas numbers and polynomials of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012065.png" /> and the length of the longest circular success run" ''Fibonacci Quart.'' , '''29''' (1991) pp. 290–297</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> V.E. Hoggatt Jr., M. Bicknell, "Roots of Fibonacci polynomials" ''Fibonacci Quart.'' , '''11''' (1973) pp. 271–274</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> E. Lucas, "Theorie de fonctions numeriques simplement periodiques" ''Amer. J. Math.'' , '''1''' (1878) pp. 184–240; 289–321</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A.N. Philippou, "Distributions and Fibonacci polynomials of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012066.png" />, longest runs, and reliability of consecutive-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012067.png" />-out-of-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012068.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012069.png" /> systems" A.N. Philippou (ed.) G.E. Bergum (ed.) A.F. Horadam (ed.) , ''Fibonacci Numbers and Their Applications'' , Reidel (1986) pp. 203–227</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> A.N. Philippou, C. Georghiou, G.N. Philippou, "Fibonacci polynomials of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012070.png" />, multinomial expansions and probability" ''Internat. J. Math. Math. Sci.'' , '''6''' (1983) pp. 545–550</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> A.N. Philippou, C. Georghiou, G.N. Philippou, "Fibonacci-type polynomials of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l130/l130120/l13012071.png" /> with probability applications" ''Fibonacci Quart.'' , '''23''' (1985) pp. 100–105</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> J. Riordan, "Combinatorial Identities" , Wiley (1968)</TD></TR></table>
| |
2020 Mathematics Subject Classification: Primary: 11B39,11K99,60C05 [MSN][ZBL]
The polynomials $V_n(x)$ (cf.
[BeHo] and
[Lu]) given by
$$\left.\begin{align*}V_0(x) &= 2,\\
V_1(x) &= x,\\ V_n(x) &= x V_{n-1}(x)+V_{n-2}(x),\quad n = 2,3,\dots
\end{align*}\quad\right\}\tag{a1}$$
They reduce to the Lucas numbers
$L_n$ for $x=1$, and they satisfy several identities, which may be easily
proved by induction, e.g.:
\begin{alignat*}{1}
&V_{-n}(x) &=\ & (-1)^nV_n(x);\tag{a2}\\
&V_{m+n}(x) &=& V_m(x)V_n(x) - (-1)^nV_{m-n}(x);\tag{a3}\\
&V_{2n}(x) &=& V_n^{\;2}(x)-2(-1)^n;\tag{a4}\\
&V_{2n+1}(x)\ &=& V_{n+1}(x)V_n(x)-(-1)^nx;\tag{a5}\\
&U_{2n}(x) &=& U_n(x)V_n(x),\tag{a6}
\end{alignat*}
where $U_m(x)$ denote the
Fibonacci polynomials;
$$V_n(x) = \alpha^n(x)+\beta^n(x),\tag{a7}$$
where
$$\alpha(x) = \frac{x+(x^2+4)^{1/2}}{2},\quad
\beta(x) = \frac{x-(x^2+4)^{1/2}}{2},$$
so
that $\alpha(x) + \beta(x) = x$ and $\alpha(x)\beta(x) = -1$; and
$$V_n(x) = \sum_{j=0}^{[n/2]} \frac{n}{n-j}\;
\frac{(n-j)!}{j!(n-2j)!}\; x^{n-2j},\quad n=1,2,\dots,\tag{a8}
$$
where $[y]$ denotes the greatest integer in $y$.
The Lucas polynomials are related to the
Chebyshev polynomials $T_n(x) = \cos(n\theta)$, $\cos(\theta) = x$, by
$$V_n(x) = 2i^{-n} T_n\Big(\frac{ix}{2}\Big),\; i = (-1)^{1/2}.\tag{a9}$$
J. Riordan
[Ri] considered the polynomials $h_n(x) = i^{-n}V_n(ix)$ and the Lucas-type
polynomials
$$L_n(x) = \sum_{j=0}^{[n/2]} \frac{n}{n-j}\; \frac{(n-j)!}{j!(n-2j)!}\; x^{n-j} = x^{n/2}V_n(x^{1/2}),\; n = 1,2,\dots,\tag{a10}$$
in a derivation of Chebyshev-type pairs of inverse
relations. V.E. Hoggatt Jr. and M. Bicknell
[HoBi] found the roots of $V_n(x)$. These are $x_j = 2i\cos((2j+1)\pi/2n)$,
$j=1,\dots,n-1$. Bicknell
[Bi] showed that $V_m(x)$ divides $V_n(x)$ if and only if $n$ is
an odd multiple of $m$. G.E. Bergum and Hoggatt Jr. introduced in
[BeHo] the bivariate Lucas polynomials $V_n(x,y)$ by the
recursion
$$\left.\begin{align*}
V_0(x,y) &= 2,\\
V_1(x,y) &= x,\\
V_n(x,y) &= x V_{n-1}(x,y)+ y V_{n-2}(x,y),\quad n = 2,3,\ldots
\end{align*}\right\rbrace\tag{a11}$$
generalized (a7) for $V_n(x,y)$, and showed that the $V_n(x,y)$ are
irreducible polynomials over the rational numbers if and only if $n=2^k$
for some positive integer (cf. also
Irreducible polynomial). The formula
$$V_n(x,y) = \sum_{j=0}^{[n/2]} \frac{n}{n-j}\; \frac{(n-j)!}{j!(n-2j)!} \;
x^{n-2j}y^j,\; n = 1,2,\dots,\tag{a12}$$
which may be derived by induction on $n$ or by expanding the
generating function of $V_n(x,y)$, generalizes (a8).
Ch.A. Charalambides
[Ch] introduced and studied the Lucas and Lucas-type
polynomials of order $k$, $V_n^{\;(k)}(x)$ and $L_n^{\;(k)}(x)$. The Lucas-type polynomials of
order $k$ satisfy the recurrence
$$\left.\begin{alignat*}{1}L_1^{\;(k)}(x) &= x,\\
L_n^{\;(k)}(x) &= x\Big(n+\sum_{j=1}^{n-1}L_{n-j}^{\;(k)}(x)\Big),\; & n = 2,\dots,k, \\
L_n^{\;(k)}(x) &= x\sum_{j=1}^k L_{n-j}^{\;(k)}(x),\; & n = k+1,k+2,\dots
\end{alignat*}\right\}\tag{a13}$$
These polynomials have the
binomial and multinomial expansions
$$\begin{alignat*}{1}L_n^{\;(k)}(x) &= -1 +
\sum_{j=0}^{[n/(k+1)]}(-1)^j\frac{n}{n-jk}\;\frac{(n-jk)!}{j!(n-jk-j)!}x^j(1+x)^{n-jk-j}\\
&=\sum \frac{n_1+2n_2+\cdots+kn_k}{n_1+\cdots+n_k}\;\frac{(n_1+\cdots+n_k)!}{n_1!\cdots n_k!} x^{n_1+\cdots+n_k},\end{alignat*}\tag{a14} $$
where the second summation is taken over all non-negative
integers $n_1,\dots,n_k$ such that $n_1+2n_2+\cdots +kn_k = n$, and they are related to the Fibonacci-type
polynomials of order $k$ (cf.
[Ph] and
[PhGePh2] and
Fibonacci polynomials), $F_n^{\;(k)}(x)$, by
$$L_n^{\;(k)}(x) = x \sum_{j=1}^{\min\{n,k\}} jF_{n-j+1}^{\;(k)}(x).\tag{a15}$$
Furthermore,
$$\begin{align*}V_n^{\;(k)}(x) &= x^{-n} L_n^{\;(k)}(x^k)\\
&= \sum_{j=1}^{\min\{n,k\}} jx^{k-j+1}U_{n-j+1}^{\;(k)}(x),\; n=1,2,\dots,\; k=2,3,\dots,\end{align*}\tag{a16}$$
where the $U_n^{\;(k)}(x)$ are the Fibonacci polynomials of order $k$ (cf.
[PhGePh]). Charalambides
[Ch] showed that the reliability of a circular
consecutive $k$-out-of-$n$:
$F$-system, $R_c(p; k,n)$, whose components function independently with
probability $p$ (and $q = 1-p$) is given by
$$\begin{align*}R_c(p; k,n) &= q^n L_n^{\;(k)}\Big(\frac{p}{q}\Big)\\
&= -q^n + \sum_{j=0}^{[n/(k+1)]}(-1)^j\frac{n}{n-jk}\;
\frac{(n-jk)!}{j!(n-jk-j)!}p^jq^{jk}.\end{align*}\tag{a17}$$
References
[BeHo] |
G.E. Bergum, V.E. Hoggatt, Jr., "Irreducibility of Lucas and generalized Lucas polynomials" Fibonacci Quart., 12 (1974) pp. 95–100 MR0349581 Zbl 0277.12002
|
[Bi] |
M. Bicknell, "A primer for the Fibonacci numbers. VII" Fibonacci Quart., 8 (1970) pp. 407–420
|
[Ch] |
Ch.A. Charalambides, "Lucas numbers and polynomials of order $k$ and the length of the longest circular success run" Fibonacci Quart., 29 (1991) pp. 290–297 MR1131401 Zbl 0745.11014
|
[HoBi] |
V.E. Hoggatt Jr., M. Bicknell, "Roots of Fibonacci polynomials" Fibonacci Quart., 11 (1973) pp. 271–274 MR0323700 Zbl 0272.33004
|
[Lu] |
E. Lucas, "Theorie de fonctions numeriques simplement periodiques" Amer. J. Math., 1 (1878) pp. 184–240; 289–321 MR1505176 MR1505164 MR1505161
|
[Ph] |
A.N. Philippou, "Distributions and Fibonacci polynomials of order $k$, longest runs, and reliability of consecutive-$k$-out-of-$n$: $F$ systems" A.N. Philippou (ed.) G.E. Bergum (ed.) A.F. Horadam (ed.), Fibonacci Numbers and Their Applications, Reidel (1986) pp. 203–227 MR0857826 Zbl 0602.60023
|
[PhGePh] |
A.N. Philippou, C. Georghiou, G.N. Philippou, "Fibonacci polynomials of order $k$, multinomial expansions and probability" Internat. J. Math. Math. Sci., 6 (1983) pp. 545–550 MR0712573 Zbl 0524.10008
|
[PhGePh2] |
A.N. Philippou, C. Georghiou, G.N. Philippou, "Fibonacci-type polynomials of order $k$ with probability applications" Fibonacci Quart., 23 (1985) pp. 100–105 MR0797126 Zbl 0563.10014
|
[Ri] |
J. Riordan, "Combinatorial Identities", Wiley (1968) MR0231725 Zbl 0194.00502
|
The Lucas polynomials $V_n(x)$ are a special case of the Dickson polynomials $D_n(x,a)$ by taking $a$ to be $-1$.