Difference between revisions of "Fundamental cycle"
From Encyclopedia of Mathematics
(Importing text file) |
m (→References: zbl link) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | ''of an | + | {{TEX|done}} |
+ | ''of an $n$-dimensional manifold'' | ||
A cycle that gives the [[Fundamental class|fundamental class]] of that manifold. | A cycle that gives the [[Fundamental class|fundamental class]] of that manifold. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Dold, "Lectures on algebraic topology" , Springer (1980)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Dold, "Lectures on algebraic topology" , Springer (1980) {{ZBL|0434.55001}}</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974)</TD></TR> | ||
+ | </table> |
Latest revision as of 18:57, 26 March 2023
of an $n$-dimensional manifold
A cycle that gives the fundamental class of that manifold.
References
[1] | A. Dold, "Lectures on algebraic topology" , Springer (1980) Zbl 0434.55001 |
[2] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) |
[3] | J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974) |
How to Cite This Entry:
Fundamental cycle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fundamental_cycle&oldid=19145
Fundamental cycle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fundamental_cycle&oldid=19145
This article was adapted from an original article by A.V. Khokhlov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article