Namespaces
Variants
Actions

Difference between revisions of "Fundamental cycle"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (→‎References: zbl link)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
''of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f042/f042180/f0421802.png" />-dimensional manifold''
+
{{TEX|done}}
 +
''of an $n$-dimensional manifold''
  
 
A cycle that gives the [[Fundamental class|fundamental class]] of that manifold.
 
A cycle that gives the [[Fundamental class|fundamental class]] of that manifold.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Dold,  "Lectures on algebraic topology" , Springer  (1980)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.W. Milnor,  J.D. Stasheff,  "Characteristic classes" , Princeton Univ. Press  (1974)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A. Dold,  "Lectures on algebraic topology" , Springer  (1980) {{ZBL|0434.55001}}</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  J.W. Milnor,  J.D. Stasheff,  "Characteristic classes" , Princeton Univ. Press  (1974)</TD></TR>
 +
</table>

Latest revision as of 18:57, 26 March 2023

of an $n$-dimensional manifold

A cycle that gives the fundamental class of that manifold.

References

[1] A. Dold, "Lectures on algebraic topology" , Springer (1980) Zbl 0434.55001
[2] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)
[3] J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974)
How to Cite This Entry:
Fundamental cycle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fundamental_cycle&oldid=19145
This article was adapted from an original article by A.V. Khokhlov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article