Difference between revisions of "Hilbert-Schmidt series"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | h0473601.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/H047/H.0407360 Hilbert\ANDSchmidt series | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A series of functions | A series of functions | ||
− | + | $$ \tag{* } | |
+ | \sum _ {n = 1 } ^ \infty | ||
+ | |||
+ | \frac{( f, \phi _ {n} ) }{\lambda _ {n} } | ||
+ | \phi _ {n} ( x), | ||
+ | $$ | ||
− | where | + | where $ \{ \lambda _ {n} \} $ |
+ | is the sequence of all eigen values of a symmetric kernel (cf. [[Kernel of an integral operator|Kernel of an integral operator]]) $ K ( x, s) $, | ||
+ | $ a \leq x, s \leq b $, | ||
+ | $ \{ \phi _ {n} ( x) \} $ | ||
+ | is the corresponding sequence of orthonormal eigen functions, while $ ( f, \phi _ {n} ) $ | ||
+ | is the scalar product of an arbitrary square-summable function $ f $ | ||
+ | and the function $ \phi _ {n} $. | ||
− | The Hilbert–Schmidt theorem: If the kernel | + | The Hilbert–Schmidt theorem: If the kernel $ K( x, s) $ |
+ | is a square-summable function in two variables, then the series (*) converges in the mean to the function | ||
− | + | $$ | |
+ | \int\limits _ { a } ^ { b } K ( x, s) f ( s) ds. | ||
+ | $$ | ||
− | If there exists a constant C such that for all | + | If there exists a constant C such that for all $ x $ |
+ | from $ ( a, b) $ | ||
+ | the inequality | ||
− | + | $$ | |
+ | \int\limits _ { a } ^ { b } | K ( x, s) | ^ {2} ds \leq C | ||
+ | $$ | ||
is fulfilled, then the Hilbert–Schmidt series converges absolutely and uniformly. | is fulfilled, then the Hilbert–Schmidt series converges absolutely and uniformly. | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981)</TD></TR></table> |
Latest revision as of 22:10, 5 June 2020
A series of functions
$$ \tag{* } \sum _ {n = 1 } ^ \infty \frac{( f, \phi _ {n} ) }{\lambda _ {n} } \phi _ {n} ( x), $$
where $ \{ \lambda _ {n} \} $ is the sequence of all eigen values of a symmetric kernel (cf. Kernel of an integral operator) $ K ( x, s) $, $ a \leq x, s \leq b $, $ \{ \phi _ {n} ( x) \} $ is the corresponding sequence of orthonormal eigen functions, while $ ( f, \phi _ {n} ) $ is the scalar product of an arbitrary square-summable function $ f $ and the function $ \phi _ {n} $.
The Hilbert–Schmidt theorem: If the kernel $ K( x, s) $ is a square-summable function in two variables, then the series (*) converges in the mean to the function
$$ \int\limits _ { a } ^ { b } K ( x, s) f ( s) ds. $$
If there exists a constant C such that for all $ x $ from $ ( a, b) $ the inequality
$$ \int\limits _ { a } ^ { b } | K ( x, s) | ^ {2} ds \leq C $$
is fulfilled, then the Hilbert–Schmidt series converges absolutely and uniformly.
Comments
References
[a1] | I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981) |
Hilbert-Schmidt series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert-Schmidt_series&oldid=19044