Namespaces
Variants
Actions

Difference between revisions of "Ordinary differential equations, property C for"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(details)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 67 formulas, 67 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
Let
 
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300802.png" /></td> </tr></table>
+
\begin{equation*} \ell _ { m } u = \left( - \frac { d ^ { 2 } } { d x ^ { 2 } } + q _ { m } ( x ) \right) u, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300803.png" /></td> </tr></table>
+
\begin{equation*} m = 1,2 , x \in \mathbf{R} _ { + } : = [ 0 , \infty ), \end{equation*}
  
and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300804.png" /> be a real-valued function,
+
and let $q _ { m } ( x )$ be a real-valued function,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300805.png" /></td> </tr></table>
+
\begin{equation*} q _ { m } ( x ) \in L _ { 1,1 } (\mathbf{ R} _ { + } ) : = \left\{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty \right\}. \end{equation*}
  
 
Consider the problem
 
Consider the problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300806.png" /></td> </tr></table>
+
\begin{equation*} ( \ell _ { m } - k ^ { 2 } ) f _ { m } = 0, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300807.png" /></td> </tr></table>
+
\begin{equation*} x \in \mathbf{R} _ { + } ,\; f _ { m } ( x , k ) = e ^ { i k x } + o ( 1 ) \;\text { as } x \rightarrow + \infty. \end{equation*}
  
 
This problem has a unique solution, which is called the Jost function.
 
This problem has a unique solution, which is called the Jost function.
Line 19: Line 27:
 
Define also the solutions to the problem
 
Define also the solutions to the problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300808.png" /></td> </tr></table>
+
\begin{equation*} \left( \ell _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300809.png" /></td> </tr></table>
+
\begin{equation*} x \in \mathbf{R} _ { + } ,\, \varphi _ { m } ( 0 , k ) = 0 ,\, \varphi _ { m } ^ { \prime } ( 0 , k ) = 1, \end{equation*}
  
 
and to the problem
 
and to the problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008010.png" /></td> </tr></table>
+
\begin{equation*} \left( \ell _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008011.png" /></td> </tr></table>
+
\begin{equation*} x \in {\bf R} _ { + } , \psi _ { m } ( 0 , k ) = 1 , \psi _ { m } ^ { \prime } ( 0 , k ) = 0. \end{equation*}
  
Assume <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008012.png" /> and
+
Assume $h ( x ) \in L ^ { 2 } ( \mathbf{R} _ { + } )$ and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\begin{equation} \tag{a1} \int _ { 0 } ^ { \infty } h ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0 , \forall k > 0. \end{equation}
  
If (a1) implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008014.png" />, then one says that the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008015.png" /> has property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008017.png" />.
+
If (a1) implies $f ( x ) \equiv 0$, then one says that the pair $\{ \ell_{1}, \ell_{2} \}$ has property $C _ { + }$.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008018.png" /> be an arbitrary fixed number, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008019.png" /> and assume
+
Let $b > 0$ be an arbitrary fixed number, let $h ( x ) \in L ^ { 1 } ( \mathbf{R} _ { + } )$ and assume
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008020.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
\begin{equation} \tag{a2} \int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0. \end{equation}
  
If (a2) implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008021.png" />, then one says that the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008022.png" /> has property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008024.png" />.
+
If (a2) implies $h ( x ) \equiv 0$, then one says that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has property $C _ { \varphi }$.
  
Similarly one defines property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008026.png" />.
+
Similarly one defines property $C _ { \psi }$.
  
It is proved in [[#References|[a1]]] that the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008027.png" /> has property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008028.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008030.png" />.
+
It is proved in [[#References|[a1]]] that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has property $C _ { + }$ if $q _ { m } \in L _ { 1,1 }$, $m = 1,2$.
  
It is proved in [[#References|[a2]]] that the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008031.png" /> has properties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008033.png" />.
+
It is proved in [[#References|[a2]]] that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has properties $C _ { \varphi }$ and $C _ { \psi }$.
  
However, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008034.png" />, then, in general, property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008035.png" /> fails to hold for a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008036.png" />. This means that there exist a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008038.png" />, and two potentials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008039.png" />, such that (a1) holds for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008040.png" />.
+
However, if $b = \infty$, then, in general, property $C _ { \varphi }$ fails to hold for a pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$. This means that there exist a function $h ( x ) \not\equiv 0$, $h \in L ^ { 1 } ( \mathbf{R} _ { + } )$, and two potentials $q_1 , q _ { 2 } \in L _ { 1 ,1} $, such that (a1) holds for all $k > 0$.
  
In [[#References|[a2]]] many applications of properties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008043.png" /> to inverse problems are presented.
+
In [[#References|[a2]]] many applications of properties $C _ { + }$, $C _ { \varphi }$ and $C _ { \psi }$ to inverse problems are presented.
  
For instance, suppose that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008045.png" />-function, defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008046.png" />, is known for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008049.png" /> is the Jost function corresponding to a potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008050.png" />.
+
For instance, suppose that the $I$-function, defined as $I ( k ) : = f ^ { \prime } ( 0 , k ) / f ( k )$, is known for all $k > 0$, $f ( k ) : = f ( 0 , k )$ and $f ( x , k )$ is the Jost function corresponding to a potential $q ( x ) \in L _ { 1,1 }$.
  
The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008051.png" /> is known as the impedance function [[#References|[a4]]], and it can be measured in some problems of electromagnetic probing of the Earth. The inverse problem (IP) is: Given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008052.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008053.png" />, can one recover <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008054.png" /> uniquely?
+
The function $I ( k )$ is known as the impedance function [[#References|[a4]]], and it can be measured in some problems of electromagnetic probing of the Earth. The inverse problem (IP) is: Given $I ( k )$ for all $k > 0$, can one recover $q ( x )$ uniquely?
  
 
This problem was solved in [[#References|[a4]]], but in [[#References|[a1]]] and [[#References|[a2]]] a new approach to this and many other inverse problems is developed. This new approach is sketched below.
 
This problem was solved in [[#References|[a4]]], but in [[#References|[a1]]] and [[#References|[a2]]] a new approach to this and many other inverse problems is developed. This new approach is sketched below.
  
Suppose that there are two potentials, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008056.png" />, which generate the same data <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008057.png" />. Subtract from the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008058.png" /> the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008059.png" />, and denote <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008061.png" />, to get <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008062.png" />. Multiply this equation by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008063.png" />, integrate over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008064.png" /> and then by parts. The assumption
+
Suppose that there are two potentials, $q _ { 1 } ( x )$ and $q_2 ( x )$, which generate the same data $I ( k )$. Subtract from the equation $( \ell _ { 1 } - k ^ { 2 } ) f _ { 1 } = 0$ the equation $( \ell _ { 2 } - k ^ { 2 } ) f _ { 2 } = 0$, and denote $f _ { 1 } - f _ { 2 } : = f$, $q _ { 2 } - q _ { 1 } : = p ( x )$, to get $( \ell _ { 1 } - k ^ { 2 } ) f = p f _ { 2 }$. Multiply this equation by $f _ { 1 } ( x , k )$, integrate over $( 0 , \infty )$ and then by parts. The assumption
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008065.png" /></td> </tr></table>
+
\begin{equation*} I _ { 1 } ( k ) = \frac { f _ { 1 } ^ { \prime } ( 0 , k ) } { f _ { 1 } ( k ) } = \frac { f _ { 2 } ^ { \prime } ( 0 , k ) } { f _ { 2 } ( k ) } = I _ { 2 } ( k ) \end{equation*}
  
implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008067.png" />.
+
implies $\int _ { 0 } ^ { \infty } p ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0$, $\forall k > 0$.
  
Using property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008068.png" /> one concludes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008069.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008070.png" />. This is a typical scheme for proving uniqueness theorems using property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008071.png" />.
+
Using property $C _ { + }$ one concludes $p ( x ) \equiv 0$, that is, $q _ { 1 } ( x ) = q _ { 2 } ( x )$. This is a typical scheme for proving uniqueness theorems using property $C$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.G. Ramm,   "Property C for ODE and applications to inverse scattering"  ''Z. Angew. Anal.'' , '''18''' :  2  (1999)  pp. 331–348</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.G. Ramm,   "Property C for ODE and applications to inverse problems"  A.G. Ramm (ed.)  P.N. Shivakumar (ed.)  A.V. Strauss (ed.) , ''Operator Theory And Its Applications'' , ''Fields Inst. Commun.'' , '''25''' , Amer. Math. Soc.  (2000)  pp. 15–75</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.G. Ramm,   "Inverse scattering problem with part of the fixed-energy phase shifts"  ''Comm. Math. Phys.'' , '''207''' :  1  (1999)  pp. 231–247</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A.G. Ramm,   "Recovery of the potential from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008072.png" />-function"  ''Math. Rept. Acad. Sci. Canada'' , '''9'''  (1987)  pp. 177–182</TD></TR></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  A.G. Ramm, "Property C for ODE and applications to inverse scattering"  ''Z. Angew. Anal.'' , '''18''' :  2  (1999)  pp. 331–348</td></tr>
 +
<tr><td valign="top">[a2]</td> <td valign="top">  A.G. Ramm, "Property C for ODE and applications to inverse problems"  A.G. Ramm (ed.)  P.N. Shivakumar (ed.)  A.V. Strauss (ed.) , ''Operator Theory And Its Applications'' , ''Fields Inst. Commun.'' , '''25''' , Amer. Math. Soc.  (2000)  pp. 15–75</td></tr>
 +
<tr><td valign="top">[a3]</td> <td valign="top">  A.G. Ramm, "Inverse scattering problem with part of the fixed-energy phase shifts"  ''Comm. Math. Phys.'' , '''207''' :  1  (1999)  pp. 231–247</td></tr>
 +
<tr><td valign="top">[a4]</td> <td valign="top">  A.G. Ramm, "Recovery of the potential from $I$-function"  ''Math. Rept. Acad. Sci. Canada'' , '''9'''  (1987)  pp. 177–182</td></tr>
 +
</table>

Latest revision as of 19:11, 22 January 2024

Let

\begin{equation*} \ell _ { m } u = \left( - \frac { d ^ { 2 } } { d x ^ { 2 } } + q _ { m } ( x ) \right) u, \end{equation*}

\begin{equation*} m = 1,2 , x \in \mathbf{R} _ { + } : = [ 0 , \infty ), \end{equation*}

and let $q _ { m } ( x )$ be a real-valued function,

\begin{equation*} q _ { m } ( x ) \in L _ { 1,1 } (\mathbf{ R} _ { + } ) : = \left\{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty \right\}. \end{equation*}

Consider the problem

\begin{equation*} ( \ell _ { m } - k ^ { 2 } ) f _ { m } = 0, \end{equation*}

\begin{equation*} x \in \mathbf{R} _ { + } ,\; f _ { m } ( x , k ) = e ^ { i k x } + o ( 1 ) \;\text { as } x \rightarrow + \infty. \end{equation*}

This problem has a unique solution, which is called the Jost function.

Define also the solutions to the problem

\begin{equation*} \left( \ell _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0, \end{equation*}

\begin{equation*} x \in \mathbf{R} _ { + } ,\, \varphi _ { m } ( 0 , k ) = 0 ,\, \varphi _ { m } ^ { \prime } ( 0 , k ) = 1, \end{equation*}

and to the problem

\begin{equation*} \left( \ell _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0, \end{equation*}

\begin{equation*} x \in {\bf R} _ { + } , \psi _ { m } ( 0 , k ) = 1 , \psi _ { m } ^ { \prime } ( 0 , k ) = 0. \end{equation*}

Assume $h ( x ) \in L ^ { 2 } ( \mathbf{R} _ { + } )$ and

\begin{equation} \tag{a1} \int _ { 0 } ^ { \infty } h ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0 , \forall k > 0. \end{equation}

If (a1) implies $f ( x ) \equiv 0$, then one says that the pair $\{ \ell_{1}, \ell_{2} \}$ has property $C _ { + }$.

Let $b > 0$ be an arbitrary fixed number, let $h ( x ) \in L ^ { 1 } ( \mathbf{R} _ { + } )$ and assume

\begin{equation} \tag{a2} \int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0. \end{equation}

If (a2) implies $h ( x ) \equiv 0$, then one says that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has property $C _ { \varphi }$.

Similarly one defines property $C _ { \psi }$.

It is proved in [a1] that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has property $C _ { + }$ if $q _ { m } \in L _ { 1,1 }$, $m = 1,2$.

It is proved in [a2] that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has properties $C _ { \varphi }$ and $C _ { \psi }$.

However, if $b = \infty$, then, in general, property $C _ { \varphi }$ fails to hold for a pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$. This means that there exist a function $h ( x ) \not\equiv 0$, $h \in L ^ { 1 } ( \mathbf{R} _ { + } )$, and two potentials $q_1 , q _ { 2 } \in L _ { 1 ,1} $, such that (a1) holds for all $k > 0$.

In [a2] many applications of properties $C _ { + }$, $C _ { \varphi }$ and $C _ { \psi }$ to inverse problems are presented.

For instance, suppose that the $I$-function, defined as $I ( k ) : = f ^ { \prime } ( 0 , k ) / f ( k )$, is known for all $k > 0$, $f ( k ) : = f ( 0 , k )$ and $f ( x , k )$ is the Jost function corresponding to a potential $q ( x ) \in L _ { 1,1 }$.

The function $I ( k )$ is known as the impedance function [a4], and it can be measured in some problems of electromagnetic probing of the Earth. The inverse problem (IP) is: Given $I ( k )$ for all $k > 0$, can one recover $q ( x )$ uniquely?

This problem was solved in [a4], but in [a1] and [a2] a new approach to this and many other inverse problems is developed. This new approach is sketched below.

Suppose that there are two potentials, $q _ { 1 } ( x )$ and $q_2 ( x )$, which generate the same data $I ( k )$. Subtract from the equation $( \ell _ { 1 } - k ^ { 2 } ) f _ { 1 } = 0$ the equation $( \ell _ { 2 } - k ^ { 2 } ) f _ { 2 } = 0$, and denote $f _ { 1 } - f _ { 2 } : = f$, $q _ { 2 } - q _ { 1 } : = p ( x )$, to get $( \ell _ { 1 } - k ^ { 2 } ) f = p f _ { 2 }$. Multiply this equation by $f _ { 1 } ( x , k )$, integrate over $( 0 , \infty )$ and then by parts. The assumption

\begin{equation*} I _ { 1 } ( k ) = \frac { f _ { 1 } ^ { \prime } ( 0 , k ) } { f _ { 1 } ( k ) } = \frac { f _ { 2 } ^ { \prime } ( 0 , k ) } { f _ { 2 } ( k ) } = I _ { 2 } ( k ) \end{equation*}

implies $\int _ { 0 } ^ { \infty } p ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0$, $\forall k > 0$.

Using property $C _ { + }$ one concludes $p ( x ) \equiv 0$, that is, $q _ { 1 } ( x ) = q _ { 2 } ( x )$. This is a typical scheme for proving uniqueness theorems using property $C$.

References

[a1] A.G. Ramm, "Property C for ODE and applications to inverse scattering" Z. Angew. Anal. , 18 : 2 (1999) pp. 331–348
[a2] A.G. Ramm, "Property C for ODE and applications to inverse problems" A.G. Ramm (ed.) P.N. Shivakumar (ed.) A.V. Strauss (ed.) , Operator Theory And Its Applications , Fields Inst. Commun. , 25 , Amer. Math. Soc. (2000) pp. 15–75
[a3] A.G. Ramm, "Inverse scattering problem with part of the fixed-energy phase shifts" Comm. Math. Phys. , 207 : 1 (1999) pp. 231–247
[a4] A.G. Ramm, "Recovery of the potential from $I$-function" Math. Rept. Acad. Sci. Canada , 9 (1987) pp. 177–182
How to Cite This Entry:
Ordinary differential equations, property C for. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ordinary_differential_equations,_property_C_for&oldid=18905
This article was adapted from an original article by A.G. Ramm (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article