|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ''of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c0271401.png" /> into a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c0271402.png" /> with group of operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c0271403.png" />''
| + | <!-- |
| + | c0271401.png |
| + | $#A+1 = 32 n = 0 |
| + | $#C+1 = 32 : ~/encyclopedia/old_files/data/C027/C.0207140 Crossed homomorphism |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c0271404.png" /> satisfying the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c0271405.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c0271406.png" /> acts trivially on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c0271407.png" />, then crossed homomorphisms are just ordinary homomorphisms. Crossed homomorphisms are also called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c0271409.png" />-cocycles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714010.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714011.png" /> (see [[Non-Abelian cohomology|Non-Abelian cohomology]]). Every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714012.png" /> defines a crossed homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714013.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714014.png" />), called a principal crossed homomorphism, or cocycle cohomologous to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714015.png" />. A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714016.png" /> is a crossed homomorphism if and only if the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714018.png" /> into the holomorph of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714019.png" /> (cf. [[Holomorph of a group|Holomorph of a group]]) given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714021.png" /> is the homomorphism defining the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714022.png" /> action on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714023.png" />, is a homomorphism. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714024.png" /> is a linear representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714025.png" /> in a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714026.png" />, then any crossed homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714027.png" /> defines a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714028.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714029.png" /> by affine transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714030.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714031.png" /> is called the kernel of the crossed homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714032.png" />; it is always a subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027140/c02714033.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
| + | ''of a group $ G $ into a group $ \Gamma $ with group of operators $ G $'' |
| | | |
| + | A mapping $ \phi : G \rightarrow \Gamma $ |
| + | satisfying the condition $ \phi ( a b ) = \phi ( a) ( a \phi ( b) ) $. |
| + | If $ G $ |
| + | acts trivially on $ \Gamma $, |
| + | then crossed homomorphisms are just ordinary homomorphisms. Crossed homomorphisms are also called $ 1 $-cocycles of $ G $ |
| + | with values in $ \Gamma $ (see [[Non-Abelian cohomology|Non-Abelian cohomology]]). Every element $ \gamma \in \Gamma $ |
| + | defines a crossed homomorphism $ \phi ( a) = \gamma ^ {-1} ( a \gamma ) $ ($ a \in G $), |
| + | called a principal crossed homomorphism, or cocycle cohomologous to $ e $. |
| + | A mapping $ \phi : G \rightarrow \Gamma $ |
| + | is a crossed homomorphism if and only if the mapping $ \rho $ |
| + | of $ G $ |
| + | into the holomorph of $ \Gamma $ (cf. [[Holomorph of a group|Holomorph of a group]]) given by $ \rho ( a) = ( \phi ( a) , \sigma ( a) ) $, |
| + | where $ \sigma : G \rightarrow \mathop{\rm Aut} \Gamma $ |
| + | is the homomorphism defining the $ G $ |
| + | action on $ \Gamma $, |
| + | is a homomorphism. For example, if $ \sigma $ |
| + | is a linear representation of $ G $ |
| + | in a vector space $ V $, |
| + | then any crossed homomorphism $ \phi : G \rightarrow V $ |
| + | defines a representation $ \rho $ |
| + | of $ G $ |
| + | by affine transformations of $ V $. |
| + | The set $ \phi ^ {-1} ( e) \subset G $ |
| + | is called the kernel of the crossed homomorphism $ \phi $; |
| + | it is always a subgroup of $ G $. |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Lang, "Rapport sur la cohomologie des groupes" , Benjamin (1966)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Lang, "Rapport sur la cohomologie des groupes" , Benjamin (1966)</TD></TR></table> |
of a group $ G $ into a group $ \Gamma $ with group of operators $ G $
A mapping $ \phi : G \rightarrow \Gamma $
satisfying the condition $ \phi ( a b ) = \phi ( a) ( a \phi ( b) ) $.
If $ G $
acts trivially on $ \Gamma $,
then crossed homomorphisms are just ordinary homomorphisms. Crossed homomorphisms are also called $ 1 $-cocycles of $ G $
with values in $ \Gamma $ (see Non-Abelian cohomology). Every element $ \gamma \in \Gamma $
defines a crossed homomorphism $ \phi ( a) = \gamma ^ {-1} ( a \gamma ) $ ($ a \in G $),
called a principal crossed homomorphism, or cocycle cohomologous to $ e $.
A mapping $ \phi : G \rightarrow \Gamma $
is a crossed homomorphism if and only if the mapping $ \rho $
of $ G $
into the holomorph of $ \Gamma $ (cf. Holomorph of a group) given by $ \rho ( a) = ( \phi ( a) , \sigma ( a) ) $,
where $ \sigma : G \rightarrow \mathop{\rm Aut} \Gamma $
is the homomorphism defining the $ G $
action on $ \Gamma $,
is a homomorphism. For example, if $ \sigma $
is a linear representation of $ G $
in a vector space $ V $,
then any crossed homomorphism $ \phi : G \rightarrow V $
defines a representation $ \rho $
of $ G $
by affine transformations of $ V $.
The set $ \phi ^ {-1} ( e) \subset G $
is called the kernel of the crossed homomorphism $ \phi $;
it is always a subgroup of $ G $.
References
[a1] | S. MacLane, "Homology" , Springer (1963) |
[a2] | S. Lang, "Rapport sur la cohomologie des groupes" , Benjamin (1966) |