Namespaces
Variants
Actions

Difference between revisions of "Ergodic set"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''in the [[Phase space|phase space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e0361301.png" /> (a metrizable compactum) of a [[Topological dynamical system|topological dynamical system]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e0361302.png" /> (a [[Flow (continuous-time dynamical system)|flow (continuous-time dynamical system)]] or a [[Cascade|cascade]]) corresponding to a normalized ergodic [[Invariant measure|invariant measure]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e0361303.png" />''
+
<!--
 +
e0361301.png
 +
$#A+1 = 20 n = 0
 +
$#C+1 = 20 : ~/encyclopedia/old_files/data/E036/E.0306130 Ergodic set
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A set of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e0361304.png" /> such that:
+
{{TEX|auto}}
 +
{{TEX|done}}
  
a) for every continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e0361305.png" /> the "time average"
+
''in the [[Phase space|phase space]]  $  X $(
 +
a metrizable compactum) of a [[Topological dynamical system|topological dynamical system]]  $  \{ S _ {t} \} $(
 +
a [[Flow (continuous-time dynamical system)|flow (continuous-time dynamical system)]] or a [[Cascade|cascade]]) corresponding to a normalized ergodic [[Invariant measure|invariant measure]]  $ \mu $''
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e0361306.png" /></td> </tr></table>
+
A set of points  $  x \in X $
 +
such that:
  
b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e0361307.png" /> for every neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e0361308.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e0361309.png" />.
+
a) for every continuous function  $  f : X \rightarrow \mathbf R $
 +
the  "time average"  
  
A point for which the limit of the time average in a) exists for every continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e03613010.png" /> is called quasi-regular. For such a point this limit has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e03613011.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e03613012.png" /> is some normalized invariant measure, depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e03613013.png" /> and not necessarily ergodic. If b) holds for this <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e03613014.png" />, then the point is called a density point, if this <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e03613015.png" /> is ergodic, then the point is called transitive; when both conditions hold, the point is called regular. The set of non-regular points has measure zero relative to any normalized invariant measure. The partition of the set of regular points into ergodic sets corresponding to different <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e03613016.png" /> is the strongest realization of the idea of decomposing a dynamical system into ergodic components (which is valid under stronger restrictions on the system).
+
$$
 +
 
 +
\frac{1}{T}
 +
\int\limits _ { 0 } ^ { T }  f ( S _ {t} x )  d t
 +
\rightarrow  \int\limits _ { X } f  d \mu \  \textrm{ as }  T \rightarrow \infty ;
 +
$$
 +
 
 +
b)  $  \mu ( U) > 0 $
 +
for every neighbourhood  $  U $
 +
of  $  x $.
 +
 
 +
A point for which the limit of the time average in a) exists for every continuous $  f $
 +
is called quasi-regular. For such a point this limit has the form $  \int f  d \mu $,  
 +
where $  \mu $
 +
is some normalized invariant measure, depending on $  x $
 +
and not necessarily ergodic. If b) holds for this $  \mu $,  
 +
then the point is called a density point, if this $  \mu $
 +
is ergodic, then the point is called transitive; when both conditions hold, the point is called regular. The set of non-regular points has measure zero relative to any normalized invariant measure. The partition of the set of regular points into ergodic sets corresponding to different $  \mu $
 +
is the strongest realization of the idea of decomposing a dynamical system into ergodic components (which is valid under stronger restrictions on the system).
  
 
Ergodic sets were introduced by N.N. Bogolyubov and N.M. Krylov [[#References|[1]]]. For other accounts, discussions of various generalizations and related questions see the references to [[Invariant measure|Invariant measure]] 1) and [[Metric transitivity|Metric transitivity]].
 
Ergodic sets were introduced by N.N. Bogolyubov and N.M. Krylov [[#References|[1]]]. For other accounts, discussions of various generalizations and related questions see the references to [[Invariant measure|Invariant measure]] 1) and [[Metric transitivity|Metric transitivity]].
Line 15: Line 45:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Krylov,  N. [N.N. Bogolyubov] Bogoliouboff,  "La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non-linéare"  ''Ann. of Math. Ser. (2)'' , '''38'''  (1937)  pp. 65–113</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Krylov,  N. [N.N. Bogolyubov] Bogoliouboff,  "La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non-linéare"  ''Ann. of Math. Ser. (2)'' , '''38'''  (1937)  pp. 65–113</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
A good account of ergodic sets is given in [[#References|[a1]]]. Closely related is the notion of a generic point (with respect to a normalized invariant measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e03613017.png" />): A quasi-regular point such that for every continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e03613018.png" /> the limit in a) is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e03613019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036130/e03613020.png" /> is the given measure.
+
A good account of ergodic sets is given in [[#References|[a1]]]. Closely related is the notion of a generic point (with respect to a normalized invariant measure $  \mu $):  
 +
A quasi-regular point such that for every continuous $  f : X \rightarrow \mathbf R $
 +
the limit in a) is $  \int f  d \mu $,  
 +
where $  \mu $
 +
is the given measure.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.C. Oxtoby,  "Ergodic sets"  ''Bull. Amer. Math. Soc.'' , '''58'''  (1952)  pp. 116–136</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.C. Oxtoby,  "Ergodic sets"  ''Bull. Amer. Math. Soc.'' , '''58'''  (1952)  pp. 116–136</TD></TR></table>

Latest revision as of 19:37, 5 June 2020


in the phase space $ X $( a metrizable compactum) of a topological dynamical system $ \{ S _ {t} \} $( a flow (continuous-time dynamical system) or a cascade) corresponding to a normalized ergodic invariant measure $ \mu $

A set of points $ x \in X $ such that:

a) for every continuous function $ f : X \rightarrow \mathbf R $ the "time average"

$$ \frac{1}{T} \int\limits _ { 0 } ^ { T } f ( S _ {t} x ) d t \rightarrow \int\limits _ { X } f d \mu \ \textrm{ as } T \rightarrow \infty ; $$

b) $ \mu ( U) > 0 $ for every neighbourhood $ U $ of $ x $.

A point for which the limit of the time average in a) exists for every continuous $ f $ is called quasi-regular. For such a point this limit has the form $ \int f d \mu $, where $ \mu $ is some normalized invariant measure, depending on $ x $ and not necessarily ergodic. If b) holds for this $ \mu $, then the point is called a density point, if this $ \mu $ is ergodic, then the point is called transitive; when both conditions hold, the point is called regular. The set of non-regular points has measure zero relative to any normalized invariant measure. The partition of the set of regular points into ergodic sets corresponding to different $ \mu $ is the strongest realization of the idea of decomposing a dynamical system into ergodic components (which is valid under stronger restrictions on the system).

Ergodic sets were introduced by N.N. Bogolyubov and N.M. Krylov [1]. For other accounts, discussions of various generalizations and related questions see the references to Invariant measure 1) and Metric transitivity.

References

[1] N. Krylov, N. [N.N. Bogolyubov] Bogoliouboff, "La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non-linéare" Ann. of Math. Ser. (2) , 38 (1937) pp. 65–113

Comments

A good account of ergodic sets is given in [a1]. Closely related is the notion of a generic point (with respect to a normalized invariant measure $ \mu $): A quasi-regular point such that for every continuous $ f : X \rightarrow \mathbf R $ the limit in a) is $ \int f d \mu $, where $ \mu $ is the given measure.

References

[a1] J.C. Oxtoby, "Ergodic sets" Bull. Amer. Math. Soc. , 58 (1952) pp. 116–136
How to Cite This Entry:
Ergodic set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ergodic_set&oldid=18858
This article was adapted from an original article by D.V. Anosov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article