Difference between revisions of "Schottky theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | s0833901.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/S083/S.0803390 Schottky theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
If a function | If a function | ||
− | + | $$ \tag{* } | |
+ | w = f( z) = c _ {0} + c _ {1} z + \dots | ||
+ | $$ | ||
− | is regular and analytic in the disc | + | is regular and analytic in the disc $ D = \{ {z } : {| z | < R } \} $ |
+ | and does not take certain finite values $ a _ {1} , a _ {2} $ | ||
+ | in $ D $, | ||
+ | then in any disc $ | z | \leq R _ {1} $, | ||
+ | $ 0 < R _ {1} < R $, | ||
+ | the modulus $ | f( z) | $ | ||
+ | is bounded by a number $ M( a _ {1} , a _ {2} , c _ {0} , R _ {1} ) $ | ||
+ | that depends only on $ a _ {1} , a _ {2} , c _ {0} , R _ {1} $( | ||
+ | see [[#References|[1]]]). A more complete formulation can be obtained, by combining the generalized Schottky theorem and Landau's theorem, for an arbitrary number $ q \geq 2 $ | ||
+ | of exceptional values. Suppose that the function (*) does not take some finite values $ a _ {1} \dots a _ {q} $, | ||
+ | $ q \geq 2 $. | ||
+ | Then for $ c _ {1} \neq 0 $, | ||
+ | the radius $ R $ | ||
+ | is bounded above by a number that depends only on $ a _ {1} \dots a _ {q} , c _ {0} , c _ {1} $( | ||
+ | Landau's theorem). Moreover, in the disc $ | z | \leq R _ {1} $, | ||
+ | $ 0 < R _ {1} < R $, | ||
+ | the modulus $ | f( z) | $ | ||
+ | is bounded by a number $ M( a _ {1} \dots a _ {q} , c _ {0} , R _ {1} ) $ | ||
+ | that depends only on $ a _ {1} \dots a _ {q} , c _ {0} , R _ {1} $( | ||
+ | Schottky's theorem). | ||
− | From the geometrical point of view Schottky's theorem means that the spherical distance (i.e. the distance on the [[Riemann sphere|Riemann sphere]]) of the image of the disc | + | From the geometrical point of view Schottky's theorem means that the spherical distance (i.e. the distance on the [[Riemann sphere|Riemann sphere]]) of the image of the disc $ | z | \leq R _ {1} $ |
+ | from the points $ a _ {1} \dots a _ {q} $ | ||
+ | is no less than a number $ d( a _ {1} \dots a _ {q} , c _ {0} , R _ {1} ) $ | ||
+ | that depends only on $ a _ {1} \dots a _ {q} , c _ {0} , R _ {1} $. | ||
+ | Schottky's theorem is one of the classical results in the theory of functions of a complex variable of the type of [[Distortion theorems|distortion theorems]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Schottky, "Ueber den Picard'schen Satz und die Borel'schen Ungleichungen" ''Sitzungsber. Preuss. Akad. Wiss.'' , '''2''' (1904) pp. 1244–1262</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Stoilov, "The theory of functions of a complex variable" , '''1–2''' , Moscow (1962) (In Russian; translated from Rumanian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Schottky, "Ueber den Picard'schen Satz und die Borel'schen Ungleichungen" ''Sitzungsber. Preuss. Akad. Wiss.'' , '''2''' (1904) pp. 1244–1262</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Stoilov, "The theory of functions of a complex variable" , '''1–2''' , Moscow (1962) (In Russian; translated from Rumanian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 08:12, 6 June 2020
If a function
$$ \tag{* } w = f( z) = c _ {0} + c _ {1} z + \dots $$
is regular and analytic in the disc $ D = \{ {z } : {| z | < R } \} $ and does not take certain finite values $ a _ {1} , a _ {2} $ in $ D $, then in any disc $ | z | \leq R _ {1} $, $ 0 < R _ {1} < R $, the modulus $ | f( z) | $ is bounded by a number $ M( a _ {1} , a _ {2} , c _ {0} , R _ {1} ) $ that depends only on $ a _ {1} , a _ {2} , c _ {0} , R _ {1} $( see [1]). A more complete formulation can be obtained, by combining the generalized Schottky theorem and Landau's theorem, for an arbitrary number $ q \geq 2 $ of exceptional values. Suppose that the function (*) does not take some finite values $ a _ {1} \dots a _ {q} $, $ q \geq 2 $. Then for $ c _ {1} \neq 0 $, the radius $ R $ is bounded above by a number that depends only on $ a _ {1} \dots a _ {q} , c _ {0} , c _ {1} $( Landau's theorem). Moreover, in the disc $ | z | \leq R _ {1} $, $ 0 < R _ {1} < R $, the modulus $ | f( z) | $ is bounded by a number $ M( a _ {1} \dots a _ {q} , c _ {0} , R _ {1} ) $ that depends only on $ a _ {1} \dots a _ {q} , c _ {0} , R _ {1} $( Schottky's theorem).
From the geometrical point of view Schottky's theorem means that the spherical distance (i.e. the distance on the Riemann sphere) of the image of the disc $ | z | \leq R _ {1} $ from the points $ a _ {1} \dots a _ {q} $ is no less than a number $ d( a _ {1} \dots a _ {q} , c _ {0} , R _ {1} ) $ that depends only on $ a _ {1} \dots a _ {q} , c _ {0} , R _ {1} $. Schottky's theorem is one of the classical results in the theory of functions of a complex variable of the type of distortion theorems.
References
[1] | F. Schottky, "Ueber den Picard'schen Satz und die Borel'schen Ungleichungen" Sitzungsber. Preuss. Akad. Wiss. , 2 (1904) pp. 1244–1262 |
[2] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[3] | S. Stoilov, "The theory of functions of a complex variable" , 1–2 , Moscow (1962) (In Russian; translated from Rumanian) |
Comments
The theorems of Landau and Schottky are also related to the Picard theorem.
References
[a1] | E. Landau, D. Gaier, "Darstellung und Begrundung einiger neuerer Ergebnisse der Funktionentheorie" , Springer, reprint (1986) |
[a2] | J.B. Conway, "Functions of one complex variable" , Springer (1978) |
Schottky theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schottky_theorem&oldid=18792