|
|
Line 1: |
Line 1: |
− | A closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v0965301.png" /> of points of a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v0965302.png" /> in which there has been specified a [[Vector field|vector field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v0965303.png" /> such that the normal vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v0965304.png" /> is orthogonal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v0965305.png" /> everywhere on its boundary surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v0965306.png" />. The vector tube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v0965307.png" /> consists of vector lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v0965308.png" /> of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v0965309.png" />, i.e. curves in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653010.png" /> at each point of which the tangent direction coincides with the direction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653011.png" />. A line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653012.png" /> is completely contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653013.png" /> if one point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653014.png" /> is contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653015.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653016.png" /> is the field of velocities of a stationary liquid flow, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653017.png" /> is the trajectory of the liquid particles, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653018.png" /> is the part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653019.png" /> "swept along" by the motion of a given amount of liquid particles.
| + | <!-- |
| + | v0965301.png |
| + | $#A+1 = 39 n = 0 |
| + | $#C+1 = 39 : ~/encyclopedia/old_files/data/V096/V.0906530 Vector tube |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The intensity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653020.png" /> of the tube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653021.png" /> in the cross-section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653022.png" /> is the flux (cf. [[Vector analysis|Vector analysis]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653023.png" /> across <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653024.png" />:
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653025.png" /></td> </tr></table>
| + | A closed set $ \Phi $ |
| + | of points of a space $ \Omega $ |
| + | in which there has been specified a [[Vector field|vector field]] $ \mathbf a ( M) $ |
| + | such that the normal vector $ \mathbf n $ |
| + | is orthogonal to $ \mathbf a $ |
| + | everywhere on its boundary surface $ S $. |
| + | The vector tube $ \Phi $ |
| + | consists of vector lines $ \Gamma $ |
| + | of the field $ \mathbf a $, |
| + | i.e. curves in $ \Omega $ |
| + | at each point of which the tangent direction coincides with the direction of $ \mathbf a $. |
| + | A line $ \Gamma $ |
| + | is completely contained in $ \Phi $ |
| + | if one point of $ \Gamma $ |
| + | is contained in $ \Phi $. |
| + | If $ \mathbf a $ |
| + | is the field of velocities of a stationary liquid flow, then $ \Gamma $ |
| + | is the trajectory of the liquid particles, while $ \Phi $ |
| + | is the part of $ \Omega $" |
| + | swept along" by the motion of a given amount of liquid particles. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653026.png" /> is the unit normal vector to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653027.png" />. If the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653028.png" /> is solenoidal (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653029.png" />), the law of preservation of the intensity of the vector tube holds:
| + | The intensity $ I $ |
| + | of the tube $ \Phi $ |
| + | in the cross-section $ S ^ \prime $ |
| + | is the flux (cf. [[Vector analysis|Vector analysis]]) of $ \mathbf a $ |
| + | across $ S ^ \prime $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653030.png" /></td> </tr></table>
| + | $$ |
| + | I( S ^ \prime ) = \int\limits \int\limits S ^ \prime ( \mathbf a , \mathbf n ) d \sigma , |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653031.png" /> be the orthogonal Cartesian coordinates of the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653032.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653033.png" /> be the coordinates of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653034.png" />. Then the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653035.png" /> is locally defined by an equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653036.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653037.png" /> satisfies the partial differential equation
| + | where $ \mathbf n $ |
| + | is the unit normal vector to $ S ^ \prime $. |
| + | If the field $ \mathbf a $ |
| + | is solenoidal ( $ \mathop{\rm div} \mathbf a = 0 $), |
| + | the law of preservation of the intensity of the vector tube holds: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653038.png" /></td> </tr></table>
| + | $$ |
| + | I( S ^ \prime ) = I( S ^ {\prime\prime} ) . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096530/v09653039.png" /></td> </tr></table>
| + | Let $ a _ {1} ( x, y, z), a _ {2} ( x, y, z), a _ {3} ( x, y, z) $ |
| + | be the orthogonal Cartesian coordinates of the vector $ \mathbf a = \mathbf a ( M), $ |
| + | and let $ x, y, z $ |
| + | be the coordinates of the point $ M $. |
| + | Then the boundary of $ \Phi $ |
| + | is locally defined by an equation $ F( x, y, z) = \textrm{ const } $, |
| + | where $ F( x, y, z) $ |
| + | satisfies the partial differential equation |
| | | |
| + | $$ |
| + | ( \mathbf a , \nabla F ) = |
| + | $$ |
| | | |
| + | $$ |
| + | = \ |
| + | a _ {1} ( x, y, z) |
| + | \frac{\partial F }{\partial x } |
| + | + |
| + | a _ {2} ( x, y, z) |
| + | \frac{\partial F }{\partial y } |
| + | + a _ {3} ( x, y, z) |
| + | \frac{\partial F }{\partial z } |
| + | = 0. |
| + | $$ |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.P. Wills, "Vector analysis with an introduction to tensor analysis" , Dover, reprint (1958) pp. Sect. 45</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.P. Wills, "Vector analysis with an introduction to tensor analysis" , Dover, reprint (1958) pp. Sect. 45</TD></TR></table> |
A closed set $ \Phi $
of points of a space $ \Omega $
in which there has been specified a vector field $ \mathbf a ( M) $
such that the normal vector $ \mathbf n $
is orthogonal to $ \mathbf a $
everywhere on its boundary surface $ S $.
The vector tube $ \Phi $
consists of vector lines $ \Gamma $
of the field $ \mathbf a $,
i.e. curves in $ \Omega $
at each point of which the tangent direction coincides with the direction of $ \mathbf a $.
A line $ \Gamma $
is completely contained in $ \Phi $
if one point of $ \Gamma $
is contained in $ \Phi $.
If $ \mathbf a $
is the field of velocities of a stationary liquid flow, then $ \Gamma $
is the trajectory of the liquid particles, while $ \Phi $
is the part of $ \Omega $"
swept along" by the motion of a given amount of liquid particles.
The intensity $ I $
of the tube $ \Phi $
in the cross-section $ S ^ \prime $
is the flux (cf. Vector analysis) of $ \mathbf a $
across $ S ^ \prime $:
$$
I( S ^ \prime ) = \int\limits \int\limits S ^ \prime ( \mathbf a , \mathbf n ) d \sigma ,
$$
where $ \mathbf n $
is the unit normal vector to $ S ^ \prime $.
If the field $ \mathbf a $
is solenoidal ( $ \mathop{\rm div} \mathbf a = 0 $),
the law of preservation of the intensity of the vector tube holds:
$$
I( S ^ \prime ) = I( S ^ {\prime\prime} ) .
$$
Let $ a _ {1} ( x, y, z), a _ {2} ( x, y, z), a _ {3} ( x, y, z) $
be the orthogonal Cartesian coordinates of the vector $ \mathbf a = \mathbf a ( M), $
and let $ x, y, z $
be the coordinates of the point $ M $.
Then the boundary of $ \Phi $
is locally defined by an equation $ F( x, y, z) = \textrm{ const } $,
where $ F( x, y, z) $
satisfies the partial differential equation
$$
( \mathbf a , \nabla F ) =
$$
$$
= \
a _ {1} ( x, y, z)
\frac{\partial F }{\partial x }
+
a _ {2} ( x, y, z)
\frac{\partial F }{\partial y }
+ a _ {3} ( x, y, z)
\frac{\partial F }{\partial z }
= 0.
$$
References
[a1] | A.P. Wills, "Vector analysis with an introduction to tensor analysis" , Dover, reprint (1958) pp. Sect. 45 |