Difference between revisions of "Unimodular lattice"
From Encyclopedia of Mathematics
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | u0953601.png | ||
+ | $#A+1 = 9 n = 0 | ||
+ | $#C+1 = 9 : ~/encyclopedia/old_files/data/U095/U.0905360 Unimodular lattice | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | A lattice $ L $ | ||
+ | in $ \mathbf R ^ {n} $ | ||
+ | such that $ \mathop{\rm vol} ( \mathbf R ^ {n} \mid L) = 1 $. | ||
+ | If $ a _ {1} \dots a _ {n} $ | ||
+ | are $ n $ | ||
+ | vectors in $ \mathbf R ^ {n} $, | ||
+ | then the lattice spanned by $ a _ {1} \dots a _ {n} $ | ||
+ | is unimodular if and only if $ | \mathop{\rm det} ( a _ {1} \dots a _ {n} ) | = 1 $( | ||
+ | because $ \mathop{\rm vol} ( \mathbf R ^ {n} \mid L ( a _ {1} \dots a _ {n} )) = | \mathop{\rm det} ( a _ {1} \dots a _ {n} ) | $). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973) pp. 16</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973) pp. 16</TD></TR></table> |
Latest revision as of 08:27, 6 June 2020
A lattice $ L $
in $ \mathbf R ^ {n} $
such that $ \mathop{\rm vol} ( \mathbf R ^ {n} \mid L) = 1 $.
If $ a _ {1} \dots a _ {n} $
are $ n $
vectors in $ \mathbf R ^ {n} $,
then the lattice spanned by $ a _ {1} \dots a _ {n} $
is unimodular if and only if $ | \mathop{\rm det} ( a _ {1} \dots a _ {n} ) | = 1 $(
because $ \mathop{\rm vol} ( \mathbf R ^ {n} \mid L ( a _ {1} \dots a _ {n} )) = | \mathop{\rm det} ( a _ {1} \dots a _ {n} ) | $).
References
[a1] | J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973) pp. 16 |
How to Cite This Entry:
Unimodular lattice. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unimodular_lattice&oldid=18539
Unimodular lattice. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unimodular_lattice&oldid=18539