|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | A transformation of the fibres (or of their homotopy invariants) of a fibre space corresponding to a path in the base. More precisely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647001.png" /> be a locally trivial [[Fibre space|fibre space]] and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647002.png" /> be a path in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647003.png" /> with initial point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647004.png" /> and end-point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647005.png" />. A trivialization of the fibration <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647006.png" /> defines a homeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647007.png" /> of the fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647008.png" /> onto the fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m0647009.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470010.png" />. If the trivialization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470011.png" /> is modified, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470012.png" /> changes into a homotopically-equivalent homeomorphism; this also happens if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470013.png" /> is changed to a homotopic path. The homotopy type of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470014.png" /> is called the monodromy transformation corresponding to a path <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470015.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470016.png" />, that is, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470017.png" /> is a loop, the monodromy transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470018.png" /> is a homeomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470019.png" /> into itself (defined, yet again, up to a homotopy). This mapping, and also the homomorphisms induced by it on the homology and cohomology spaces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470020.png" />, is also called a monodromy transformation. The correspondence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470021.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470022.png" /> gives a representation of the [[Fundamental group|fundamental group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470023.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470024.png" />.
| + | <!-- |
| + | m0647001.png |
| + | $#A+1 = 184 n = 0 |
| + | $#C+1 = 184 : ~/encyclopedia/old_files/data/M064/M.0604700 Monodromy transformation |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The idea of a monodromy transformation arose in the study of multi-valued functions (see [[Monodromy theorem|Monodromy theorem]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470025.png" /> is the [[Riemann surface|Riemann surface]] of such a function, then by eliminating the singular points of the function from the Riemann sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470026.png" />, an unbranched covering is obtained. The monodromy transformation in this case is also called a covering or deck transformation.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | The monodromy transformation arises most frequently in the following situation. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470027.png" /> be the unit disc in the complex plane, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470028.png" /> be an [[Analytic space|analytic space]], let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470029.png" /> be a proper holomorphic mapping (cf. [[Proper morphism|Proper morphism]]), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470030.png" /> be the fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470033.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470034.png" />. Diminishing, if necessary, the radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470035.png" />, the fibre space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470036.png" /> can be made locally trivial. The monodromy transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470037.png" /> associated with a circuit around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470038.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470039.png" /> is called the monodromy of the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470040.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470041.png" />, it acts on the (co)homology spaces of the fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470042.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470043.png" />. The most studied case is when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470044.png" /> and the fibres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470046.png" />, are smooth. The action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470047.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470048.png" />, in this case, is quasi-unipotent [[#References|[4]]], that is, there are positive integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470050.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470051.png" />. The properties of the monodromy display many characteristic features of the degeneracy of the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470052.png" />. The monodromy of the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470053.png" /> is closely related to mixed Hodge structures (cf. [[Hodge structure|Hodge structure]]) on the cohomology spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470055.png" /> (see [[#References|[5]]]–[[#References|[7]]]).
| + | A transformation of the fibres (or of their homotopy invariants) of a fibre space corresponding to a path in the base. More precisely, let $ p : E \rightarrow B $ |
| + | be a locally trivial [[Fibre space|fibre space]] and let $ \gamma : [ 0 , 1 ] \rightarrow B $ |
| + | be a path in $ B $ |
| + | with initial point $ a = \gamma ( 0) $ |
| + | and end-point $ b = \gamma ( 1) $. |
| + | A trivialization of the fibration $ \gamma ^ {*} ( E) $ |
| + | defines a homeomorphism $ T _ \gamma $ |
| + | of the fibre $ p ^ {-} 1 ( a) $ |
| + | onto the fibre $ p ^ {-} 1 ( b) $, |
| + | $ T _ \gamma : p ^ {-} 1 ( a) \rightarrow p ^ {-} 1 ( b) $. |
| + | If the trivialization of $ \gamma ^ {*} ( E) $ |
| + | is modified, then $ T _ \gamma $ |
| + | changes into a homotopically-equivalent homeomorphism; this also happens if $ \gamma $ |
| + | is changed to a homotopic path. The homotopy type of $ T _ \gamma $ |
| + | is called the monodromy transformation corresponding to a path $ \gamma $. |
| + | When $ a = b $, |
| + | that is, when $ \gamma $ |
| + | is a loop, the monodromy transformation $ T _ \gamma $ |
| + | is a homeomorphism of $ F = p ^ {-} 1 ( a) $ |
| + | into itself (defined, yet again, up to a homotopy). This mapping, and also the homomorphisms induced by it on the homology and cohomology spaces of $ F $, |
| + | is also called a monodromy transformation. The correspondence of $ \gamma $ |
| + | with $ T _ \gamma $ |
| + | gives a representation of the [[Fundamental group|fundamental group]] $ \pi _ {1} ( B , a ) $ |
| + | on $ H ^ {*} ( F ) $. |
| | | |
− | When the singularities of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470056.png" /> are isolated, the monodromy transformation can be localized. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470057.png" /> be a singular point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470058.png" /> (or, equivalently, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470059.png" />) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470060.png" /> be a sphere of sufficiently small radius in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470061.png" /> with centre at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470062.png" />. Diminishing, if necessary, the radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470063.png" />, a local trivialization of the fibre space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470064.png" /> can be defined. It is compatible with the trivialization of the fibre space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470065.png" /> on the boundary. This gives a diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470066.png" /> of the manifold of "vanishing cycles" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470067.png" /> into itself which is the identity on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470068.png" />, and which is called the local monodromy of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470069.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470070.png" />. The action of the monodromy transformation on the cohomology spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470071.png" /> reflects the singularity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470072.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470073.png" /> (see [[#References|[1]]], [[#References|[2]]], [[#References|[7]]]). It is known that the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470074.png" /> is homotopically equivalent to a bouquet of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470075.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470076.png" />-dimensional spheres, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470077.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470078.png" /> is the Milnor number of the germ of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470079.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470080.png" />.
| + | The idea of a monodromy transformation arose in the study of multi-valued functions (see [[Monodromy theorem|Monodromy theorem]]). If $ S \rightarrow P ^ {1} ( \mathbf C ) $ |
| + | is the [[Riemann surface|Riemann surface]] of such a function, then by eliminating the singular points of the function from the Riemann sphere $ P ^ {1} ( \mathbf C ) $, |
| + | an unbranched covering is obtained. The monodromy transformation in this case is also called a covering or deck transformation. |
| | | |
− | The simplest case is that of a Morse singularity when, in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470081.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470082.png" /> reduces to the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470083.png" /> (cf. [[Morse lemma|Morse lemma]]). In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470084.png" />, and the interior <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470085.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470086.png" /> is diffeomorphic to the tangent bundle of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470087.png" />-dimensional sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470088.png" />. A vanishing cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470089.png" /> is a generator of the cohomology group with compact support <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470090.png" />, defined up to sign. In general, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470091.png" /> is a proper holomorphic mapping (as above, having a unique Morse singularity at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470092.png" />), then a cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470093.png" /> vanishing at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470094.png" /> is the image of a cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470095.png" /> under the natural mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470096.png" />. In this case the specialization homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470097.png" /> is an isomorphism for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470098.png" />, and the sequence | + | The monodromy transformation arises most frequently in the following situation. Let $ D = \{ {z \in \mathbf C } : {| z | < 1 } \} $ |
| + | be the unit disc in the complex plane, let $ X $ |
| + | be an [[Analytic space|analytic space]], let $ f : X \rightarrow D $ |
| + | be a proper holomorphic mapping (cf. [[Proper morphism|Proper morphism]]), let $ X _ {t} $ |
| + | be the fibre $ f ^ { - 1 } ( t) $, |
| + | $ t \in D $, |
| + | $ D ^ {*} = D \setminus \{ 0 \} $, |
| + | and let $ X ^ {*} = f ^ { - 1 } ( D ^ {*} ) $. |
| + | Diminishing, if necessary, the radius of $ D $, |
| + | the fibre space $ f : X ^ {*} \rightarrow D ^ {*} $ |
| + | can be made locally trivial. The monodromy transformation $ T $ |
| + | associated with a circuit around $ 0 $ |
| + | in $ D $ |
| + | is called the monodromy of the family $ f : X \rightarrow D $ |
| + | at $ 0 \in D $, |
| + | it acts on the (co)homology spaces of the fibre $ X _ {t} $, |
| + | where $ t \in D ^ {*} $. |
| + | The most studied case is when $ X $ |
| + | and the fibres $ X _ {t} $, |
| + | $ t \neq 0 $, |
| + | are smooth. The action of $ T $ |
| + | on $ H ^ {*} ( X _ {t} , \mathbf Q ) $, |
| + | in this case, is quasi-unipotent [[#References|[4]]], that is, there are positive integers $ k $ |
| + | and $ N $ |
| + | such that $ ( T ^ {k} - 1 ) ^ {N} = 0 $. |
| + | The properties of the monodromy display many characteristic features of the degeneracy of the family $ f : X \rightarrow D $. |
| + | The monodromy of the family $ f : X \rightarrow D $ |
| + | is closely related to mixed Hodge structures (cf. [[Hodge structure|Hodge structure]]) on the cohomology spaces $ H ^ {*} ( X _ {0} ) $ |
| + | and $ H ^ {*} ( X _ {t} ) $( |
| + | see [[#References|[5]]]–[[#References|[7]]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m06470099.png" /></td> </tr></table>
| + | When the singularities of $ f : X \rightarrow D $ |
| + | are isolated, the monodromy transformation can be localized. Let $ x $ |
| + | be a singular point of $ f $( |
| + | or, equivalently, of $ X _ {0} $) |
| + | and let $ B $ |
| + | be a sphere of sufficiently small radius in $ X $ |
| + | with centre at $ x $. |
| + | Diminishing, if necessary, the radius of $ D $, |
| + | a local trivialization of the fibre space $ B \cap f ^ { - 1 } ( D ^ {*} ) $ |
| + | can be defined. It is compatible with the trivialization of the fibre space $ \partial B \cap f ^ { - 1 } ( D) \rightarrow D $ |
| + | on the boundary. This gives a diffeomorphism $ T $ |
| + | of the manifold of "vanishing cycles" $ V _ {t} = B \cap X _ {t} $ |
| + | into itself which is the identity on $ \partial V _ {t} $, |
| + | and which is called the local monodromy of $ f $ |
| + | at $ x $. |
| + | The action of the monodromy transformation on the cohomology spaces $ H ^ {*} ( V _ {t} ) $ |
| + | reflects the singularity of $ f $ |
| + | at $ x $( |
| + | see [[#References|[1]]], [[#References|[2]]], [[#References|[7]]]). It is known that the manifold $ V _ {t} $ |
| + | is homotopically equivalent to a bouquet of $ \mu $ |
| + | $ n $- |
| + | dimensional spheres, where $ n + 1 = \mathop{\rm dim} X $ |
| + | and $ \mu $ |
| + | is the Milnor number of the germ of $ f $ |
| + | at $ x $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700100.png" /></td> </tr></table>
| + | The simplest case is that of a Morse singularity when, in a neighbourhood of $ x $, |
| + | $ f $ |
| + | reduces to the form $ f = z _ {0} ^ {2} + \dots + z _ {n} ^ {2} $( |
| + | cf. [[Morse lemma|Morse lemma]]). In this case $ \mu = 1 $, |
| + | and the interior $ V _ {t} ^ {0} $ |
| + | of $ V _ {t} $ |
| + | is diffeomorphic to the tangent bundle of the $ n $- |
| + | dimensional sphere $ S ^ {n} $. |
| + | A vanishing cycle $ \delta $ |
| + | is a generator of the cohomology group with compact support $ H _ {c} ^ {n} ( V _ {t} ^ {0} , \mathbf Z ) \cong \mathbf Z $, |
| + | defined up to sign. In general, if $ f : X \rightarrow D $ |
| + | is a proper holomorphic mapping (as above, having a unique Morse singularity at $ x $), |
| + | then a cycle $ \delta _ {x} $ |
| + | vanishing at $ x $ |
| + | is the image of a cycle $ \delta \in H _ {c} ^ {n} ( V _ {t} ^ {0} ) $ |
| + | under the natural mapping $ H _ {c} ^ {n} ( V _ {t} ^ {0} ) \rightarrow H ^ {n} ( X _ {t} ) $. |
| + | In this case the specialization homomorphism $ r _ {t} ^ {*} : H ^ {i} ( X _ {0} ) \rightarrow H ^ {i} ( X _ {t} ) $ |
| + | is an isomorphism for $ i \neq n , n + 1 $, |
| + | and the sequence |
| | | |
− | is exact. The monodromy transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700101.png" /> acts trivially on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700102.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700103.png" /> and its action on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700104.png" /> is given by the Picard–Lefschetz formula: For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700105.png" />,
| + | $$ |
| + | 0 \rightarrow H ^ {n} ( X _ {0} ) \rightarrow H ^ {n} ( X _ {t} ) |
| + | \mathop \rightarrow \limits ^ { {( , \delta _ {x} ) }} \mathbf Z \rightarrow |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700106.png" /></td> </tr></table>
| + | $$ |
| + | \rightarrow \ |
| + | H ^ {n+} 1 ( X _ {0} ) \rightarrow H ^ {n+} 1 ( X _ {t} ) \rightarrow 0 |
| + | $$ |
| | | |
− | The sign in this formula and the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700107.png" /> are collected in the table.''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700108.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700109.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700110.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700111.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700112.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700113.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700114.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700115.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700116.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700117.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700118.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700119.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700120.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700121.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700122.png" /></td> </tr> </tbody> </table> | + | is exact. The monodromy transformation $ T $ |
| + | acts trivially on $ H ^ {i} ( X _ {t} ) $ |
| + | for $ i \neq n $ |
| + | and its action on $ H ^ {n} ( X _ {t} ) $ |
| + | is given by the Picard–Lefschetz formula: For $ z \in H ^ {n} ( X _ {t} ) $, |
| + | |
| + | $$ |
| + | T _ {z} = z \pm ( z , \delta _ {x} ) \delta _ {x} . |
| + | $$ |
| + | |
| + | The sign in this formula and the values of $ ( \delta _ {x} , \delta _ {x} ) $ |
| + | are collected in the table.<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ n \mathop{\rm mod} 4 $ |
| + | </td> <td colname="2" style="background-color:white;" colspan="1"> $ 0 $ |
| + | </td> <td colname="3" style="background-color:white;" colspan="1"> $ 1 $ |
| + | </td> <td colname="4" style="background-color:white;" colspan="1"> $ 2 $ |
| + | </td> <td colname="5" style="background-color:white;" colspan="1"> $ 3 $ |
| + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ \pm $ |
| + | </td> <td colname="2" style="background-color:white;" colspan="1"> $ - $ |
| + | </td> <td colname="3" style="background-color:white;" colspan="1"> $ - $ |
| + | </td> <td colname="4" style="background-color:white;" colspan="1"> $ + $ |
| + | </td> <td colname="5" style="background-color:white;" colspan="1"> $ + $ |
| + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ ( \delta _ {x} , \delta _ {x} ) $ |
| + | </td> <td colname="2" style="background-color:white;" colspan="1"> $ 2 $ |
| + | </td> <td colname="3" style="background-color:white;" colspan="1"> $ 0 $ |
| + | </td> <td colname="4" style="background-color:white;" colspan="1"> $ - 2 $ |
| + | </td> <td colname="5" style="background-color:white;" colspan="1"> $ 0 $ |
| + | </td> </tr> </tbody> </table> |
| | | |
| </td></tr> </table> | | </td></tr> </table> |
| | | |
− | A monodromy transformation preserves the intersection form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700123.png" />. | + | A monodromy transformation preserves the intersection form on $ H ^ {n} ( X _ {t} ) $. |
| | | |
− | Vanishing cycles and monodromy transformations are used in the Picard–Lefschetz theory, associating the cohomology space of a projective complex manifold and its hyperplane sections. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700124.png" /> be a smooth manifold of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700125.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700126.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700127.png" />, be a pencil of hyperplane sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700128.png" /> with basic set (axis of the pencil) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700129.png" />; let the following conditions be satisfied: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700130.png" /> is a smooth submanifold in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700131.png" />; b) there is a finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700132.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700133.png" /> is smooth for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700134.png" />; and c) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700135.png" /> the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700136.png" /> has a unique non-degenerate quadratic singular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700137.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700138.png" />. Pencils with these properties (Lefschetz pencils) always exist. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700139.png" /> be a monoidal transformation with centre on the axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700140.png" /> of the pencil, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700141.png" /> be the morphism defined by the pencil <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700142.png" />; here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700143.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700144.png" />. Let a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700145.png" /> be fixed; then the monodromy transformation gives an action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700146.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700147.png" /> (non-trivial only for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700148.png" />). To describe the action of the monodromy on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700149.png" /> one chooses points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700150.png" />, situated near <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700151.png" />, and paths <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700152.png" /> leading from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700153.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700154.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700155.png" /> be the loop constructed as follows: first go along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700156.png" />, then once round <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700157.png" /> and, finally, return along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700158.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700159.png" />. In addition, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700160.png" /> be a cycle vanishing at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700161.png" /> (more precisely, take a vanishing cycle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700162.png" /> and transfer it to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700163.png" /> by means of the monodromy transformation corresponding to the path <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700164.png" />). Finally, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700165.png" /> be the subspace generated by the vanishing cycles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700166.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700167.png" /> (the vanishing cohomology space). Then the following hold. | + | Vanishing cycles and monodromy transformations are used in the Picard–Lefschetz theory, associating the cohomology space of a projective complex manifold and its hyperplane sections. Let $ X \subset P ^ {N} $ |
| + | be a smooth manifold of dimension $ n + 1 $, |
| + | and let $ \{ X _ {t} \} $, |
| + | $ t \in P ^ {1} $, |
| + | be a pencil of hyperplane sections of $ X $ |
| + | with basic set (axis of the pencil) $ Y \subset X $; |
| + | let the following conditions be satisfied: a) $ Y $ |
| + | is a smooth submanifold in $ X $; |
| + | b) there is a finite set $ S \subset P ^ {1} $ |
| + | such that $ X _ {t} $ |
| + | is smooth for $ t \in P ^ {1} \setminus S $; |
| + | and c) for $ s \in S $ |
| + | the manifold $ X _ {s} $ |
| + | has a unique non-degenerate quadratic singular point $ x _ {s} $, |
| + | where $ x _ {s} \in Y $. |
| + | Pencils with these properties (Lefschetz pencils) always exist. Let $ \sigma : \overline{X}\; \rightarrow X $ |
| + | be a monoidal transformation with centre on the axis $ Y $ |
| + | of the pencil, and let $ f : \overline{X}\; \rightarrow P ^ {1} $ |
| + | be the morphism defined by the pencil $ \{ X _ {t} \} $; |
| + | here $ f ^ { - 1 } ( t) \cong X _ {t} $ |
| + | for all $ t \in P ^ {1} $. |
| + | Let a point $ 0 \in P ^ {1} \setminus S $ |
| + | be fixed; then the monodromy transformation gives an action of $ \pi _ {1} ( P ^ {1} \setminus S , 0 ) $ |
| + | on $ H ^ {i} ( X _ {0} ) $( |
| + | non-trivial only for $ i = n $). |
| + | To describe the action of the monodromy on $ H ^ {n} ( X _ {0} ) $ |
| + | one chooses points $ s ^ \prime $, |
| + | situated near $ s \in S $, |
| + | and paths $ \gamma _ {s} ^ \prime $ |
| + | leading from $ 0 $ |
| + | to $ s ^ \prime $. |
| + | Let $ \gamma _ {s} \in \pi _ {1} ( p ^ {1} \setminus S , 0 ) $ |
| + | be the loop constructed as follows: first go along $ \gamma _ {s} ^ \prime $, |
| + | then once round $ s $ |
| + | and, finally, return along $ \gamma _ {s} ^ \prime $ |
| + | to $ 0 $. |
| + | In addition, let $ \delta _ {s} $ |
| + | be a cycle vanishing at $ x _ {s} $( |
| + | more precisely, take a vanishing cycle in $ H ^ {n} ( X _ {s ^ \prime } ) $ |
| + | and transfer it to $ H ^ {n} ( X _ {0} ) $ |
| + | by means of the monodromy transformation corresponding to the path $ \gamma _ {s} ^ \prime $). |
| + | Finally, let $ E \subset H ^ {n} ( X _ {0} , \mathbf Q ) $ |
| + | be the subspace generated by the vanishing cycles $ \delta _ {s} $, |
| + | $ s \in S $( |
| + | the vanishing cohomology space). Then the following hold. |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700168.png" /> is generated by the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700169.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700170.png" />; | + | 1) $ \pi _ {1} ( P ^ {1} \setminus S , 0 ) $ |
| + | is generated by the elements $ \gamma _ {s} $, |
| + | $ s \in S $; |
| | | |
− | 2) the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700171.png" /> is given by the formula | + | 2) the action of $ \gamma _ {s} $ |
| + | is given by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700172.png" /></td> </tr></table>
| + | $$ |
| + | \gamma _ {s} ( z ) = z \pm ( z , \delta _ {s} ) \delta _ {s} ; |
| + | $$ |
| | | |
− | 3) the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700173.png" /> is invariant under the action of the monodromy group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700174.png" />; | + | 3) the space $ E \subset H ^ {n} ( X _ {0} ) $ |
| + | is invariant under the action of the monodromy group $ \pi _ {1} ( P ^ {1} \setminus S , 0 ) $; |
| | | |
− | 4) the space of elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700175.png" /> that are invariant relative to monodromy coincides with the orthogonal complement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700176.png" /> relative to the intersection form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700177.png" />, and also with the images of the natural homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700178.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700179.png" />; | + | 4) the space of elements in $ H ^ {n} ( X _ {0} ) $ |
| + | that are invariant relative to monodromy coincides with the orthogonal complement of $ E $ |
| + | relative to the intersection form on $ H ^ {n} ( X _ {0} ) $, |
| + | and also with the images of the natural homomorphisms $ H _ {n} ( \overline{X}\; ) \rightarrow H _ {n} ( X _ {0} ) $ |
| + | and $ H ^ {n} ( X ) \rightarrow H ^ {n} ( X _ {0} ) $; |
| | | |
− | 5) the vanishing cycles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700180.png" /> are conjugate (up to sign) under the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700181.png" />; | + | 5) the vanishing cycles $ \pm \delta _ {s} $ |
| + | are conjugate (up to sign) under the action of $ \pi _ {1} ( P ^ {1} \setminus S , 0 ) $; |
| | | |
− | 6) the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700182.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700183.png" /> is absolutely irreducible. | + | 6) the action of $ \pi _ {1} ( P ^ {1} \setminus S , 0 ) $ |
| + | on $ E $ |
| + | is absolutely irreducible. |
| | | |
− | The formalism of vanishing cycles, monodromy transformations and the Picard–Lefschetz theory has also been constructed for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064700/m064700184.png" />-adic cohomology spaces of algebraic varieties over any field (see [[#References|[3]]]). | + | The formalism of vanishing cycles, monodromy transformations and the Picard–Lefschetz theory has also been constructed for $ l $- |
| + | adic cohomology spaces of algebraic varieties over any field (see [[#References|[3]]]). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.I. Arnol'd, "Normal forms of functions in neighbourhoods of degenerate critical points" ''Russian Math. Surveys'' , '''29''' : 2 (1974) pp. 10–50 ''Uspekhi Mat. Nauk'' , '''29''' : 2 (1974) pp. 11–49</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Milnor, "Singular points of complex hypersurfaces" , Princeton Univ. Press (1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P. Deligne (ed.) N.M. Katz (ed.) , ''Groupes de monodromie en géométrie algébrique. SGA 7.II'' , ''Lect. notes in math.'' , '''340''' , Springer (1973)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> C.H. Clemens, "Picard–Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities" ''Trans. Amer. Math. Soc.'' , '''136''' (1969) pp. 93–108</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W. Schmid, "Variation of Hodge structure: the singularities of the period mapping" ''Invent. Math.'' , '''22''' (1973) pp. 211–319</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> J. Steenbrink, "Limits of Hodge structures" ''Invent. Math.'' , '''31''' (1976) pp. 229–257</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> J.H.M. Steenbrink, "Mixed Hodge structure on the vanishing cohomology" P. Holm (ed.) , ''Real and Complex Singularities (Oslo, 1976). Proc. Nordic Summer School'' , Sijthoff & Noordhoff (1977) pp. 524–563</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> S. Lefschetz, "L'analysis situs et la géométrie algébrique" , Gauthier-Villars (1924)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> S. Lefschetz, "A page of mathematical autobiography" ''Bull. Amer. Math. Soc.'' , '''74''' : 5 (1968) pp. 854–879</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.I. Arnol'd, "Normal forms of functions in neighbourhoods of degenerate critical points" ''Russian Math. Surveys'' , '''29''' : 2 (1974) pp. 10–50 ''Uspekhi Mat. Nauk'' , '''29''' : 2 (1974) pp. 11–49 {{MR|}} {{ZBL|0304.57018}} {{ZBL|0298.57022}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Milnor, "Singular points of complex hypersurfaces" , Princeton Univ. Press (1968) {{MR|0239612}} {{ZBL|0184.48405}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P. Deligne (ed.) N.M. Katz (ed.) , ''Groupes de monodromie en géométrie algébrique. SGA 7.II'' , ''Lect. notes in math.'' , '''340''' , Springer (1973) {{MR|0354657}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> C.H. Clemens, "Picard–Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities" ''Trans. Amer. Math. Soc.'' , '''136''' (1969) pp. 93–108 {{MR|0233814}} {{ZBL|0185.51302}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W. Schmid, "Variation of Hodge structure: the singularities of the period mapping" ''Invent. Math.'' , '''22''' (1973) pp. 211–319 {{MR|0382272}} {{ZBL|0278.14003}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> J. Steenbrink, "Limits of Hodge structures" ''Invent. Math.'' , '''31''' (1976) pp. 229–257 {{MR|0429885}} {{ZBL|0303.14002}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> J.H.M. Steenbrink, "Mixed Hodge structure on the vanishing cohomology" P. Holm (ed.) , ''Real and Complex Singularities (Oslo, 1976). Proc. Nordic Summer School'' , Sijthoff & Noordhoff (1977) pp. 524–563 {{MR|0485870}} {{ZBL|0373.14007}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> S. Lefschetz, "L'analysis situs et la géométrie algébrique" , Gauthier-Villars (1924) {{MR|0033557}} {{MR|1520618}} {{ZBL|}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> S. Lefschetz, "A page of mathematical autobiography" ''Bull. Amer. Math. Soc.'' , '''74''' : 5 (1968) pp. 854–879 {{MR|0240803}} {{ZBL|0187.18601}} </TD></TR></table> |
A transformation of the fibres (or of their homotopy invariants) of a fibre space corresponding to a path in the base. More precisely, let $ p : E \rightarrow B $
be a locally trivial fibre space and let $ \gamma : [ 0 , 1 ] \rightarrow B $
be a path in $ B $
with initial point $ a = \gamma ( 0) $
and end-point $ b = \gamma ( 1) $.
A trivialization of the fibration $ \gamma ^ {*} ( E) $
defines a homeomorphism $ T _ \gamma $
of the fibre $ p ^ {-} 1 ( a) $
onto the fibre $ p ^ {-} 1 ( b) $,
$ T _ \gamma : p ^ {-} 1 ( a) \rightarrow p ^ {-} 1 ( b) $.
If the trivialization of $ \gamma ^ {*} ( E) $
is modified, then $ T _ \gamma $
changes into a homotopically-equivalent homeomorphism; this also happens if $ \gamma $
is changed to a homotopic path. The homotopy type of $ T _ \gamma $
is called the monodromy transformation corresponding to a path $ \gamma $.
When $ a = b $,
that is, when $ \gamma $
is a loop, the monodromy transformation $ T _ \gamma $
is a homeomorphism of $ F = p ^ {-} 1 ( a) $
into itself (defined, yet again, up to a homotopy). This mapping, and also the homomorphisms induced by it on the homology and cohomology spaces of $ F $,
is also called a monodromy transformation. The correspondence of $ \gamma $
with $ T _ \gamma $
gives a representation of the fundamental group $ \pi _ {1} ( B , a ) $
on $ H ^ {*} ( F ) $.
The idea of a monodromy transformation arose in the study of multi-valued functions (see Monodromy theorem). If $ S \rightarrow P ^ {1} ( \mathbf C ) $
is the Riemann surface of such a function, then by eliminating the singular points of the function from the Riemann sphere $ P ^ {1} ( \mathbf C ) $,
an unbranched covering is obtained. The monodromy transformation in this case is also called a covering or deck transformation.
The monodromy transformation arises most frequently in the following situation. Let $ D = \{ {z \in \mathbf C } : {| z | < 1 } \} $
be the unit disc in the complex plane, let $ X $
be an analytic space, let $ f : X \rightarrow D $
be a proper holomorphic mapping (cf. Proper morphism), let $ X _ {t} $
be the fibre $ f ^ { - 1 } ( t) $,
$ t \in D $,
$ D ^ {*} = D \setminus \{ 0 \} $,
and let $ X ^ {*} = f ^ { - 1 } ( D ^ {*} ) $.
Diminishing, if necessary, the radius of $ D $,
the fibre space $ f : X ^ {*} \rightarrow D ^ {*} $
can be made locally trivial. The monodromy transformation $ T $
associated with a circuit around $ 0 $
in $ D $
is called the monodromy of the family $ f : X \rightarrow D $
at $ 0 \in D $,
it acts on the (co)homology spaces of the fibre $ X _ {t} $,
where $ t \in D ^ {*} $.
The most studied case is when $ X $
and the fibres $ X _ {t} $,
$ t \neq 0 $,
are smooth. The action of $ T $
on $ H ^ {*} ( X _ {t} , \mathbf Q ) $,
in this case, is quasi-unipotent [4], that is, there are positive integers $ k $
and $ N $
such that $ ( T ^ {k} - 1 ) ^ {N} = 0 $.
The properties of the monodromy display many characteristic features of the degeneracy of the family $ f : X \rightarrow D $.
The monodromy of the family $ f : X \rightarrow D $
is closely related to mixed Hodge structures (cf. Hodge structure) on the cohomology spaces $ H ^ {*} ( X _ {0} ) $
and $ H ^ {*} ( X _ {t} ) $(
see [5]–[7]).
When the singularities of $ f : X \rightarrow D $
are isolated, the monodromy transformation can be localized. Let $ x $
be a singular point of $ f $(
or, equivalently, of $ X _ {0} $)
and let $ B $
be a sphere of sufficiently small radius in $ X $
with centre at $ x $.
Diminishing, if necessary, the radius of $ D $,
a local trivialization of the fibre space $ B \cap f ^ { - 1 } ( D ^ {*} ) $
can be defined. It is compatible with the trivialization of the fibre space $ \partial B \cap f ^ { - 1 } ( D) \rightarrow D $
on the boundary. This gives a diffeomorphism $ T $
of the manifold of "vanishing cycles" $ V _ {t} = B \cap X _ {t} $
into itself which is the identity on $ \partial V _ {t} $,
and which is called the local monodromy of $ f $
at $ x $.
The action of the monodromy transformation on the cohomology spaces $ H ^ {*} ( V _ {t} ) $
reflects the singularity of $ f $
at $ x $(
see [1], [2], [7]). It is known that the manifold $ V _ {t} $
is homotopically equivalent to a bouquet of $ \mu $
$ n $-
dimensional spheres, where $ n + 1 = \mathop{\rm dim} X $
and $ \mu $
is the Milnor number of the germ of $ f $
at $ x $.
The simplest case is that of a Morse singularity when, in a neighbourhood of $ x $,
$ f $
reduces to the form $ f = z _ {0} ^ {2} + \dots + z _ {n} ^ {2} $(
cf. Morse lemma). In this case $ \mu = 1 $,
and the interior $ V _ {t} ^ {0} $
of $ V _ {t} $
is diffeomorphic to the tangent bundle of the $ n $-
dimensional sphere $ S ^ {n} $.
A vanishing cycle $ \delta $
is a generator of the cohomology group with compact support $ H _ {c} ^ {n} ( V _ {t} ^ {0} , \mathbf Z ) \cong \mathbf Z $,
defined up to sign. In general, if $ f : X \rightarrow D $
is a proper holomorphic mapping (as above, having a unique Morse singularity at $ x $),
then a cycle $ \delta _ {x} $
vanishing at $ x $
is the image of a cycle $ \delta \in H _ {c} ^ {n} ( V _ {t} ^ {0} ) $
under the natural mapping $ H _ {c} ^ {n} ( V _ {t} ^ {0} ) \rightarrow H ^ {n} ( X _ {t} ) $.
In this case the specialization homomorphism $ r _ {t} ^ {*} : H ^ {i} ( X _ {0} ) \rightarrow H ^ {i} ( X _ {t} ) $
is an isomorphism for $ i \neq n , n + 1 $,
and the sequence
$$
0 \rightarrow H ^ {n} ( X _ {0} ) \rightarrow H ^ {n} ( X _ {t} )
\mathop \rightarrow \limits ^ { {( , \delta _ {x} ) }} \mathbf Z \rightarrow
$$
$$
\rightarrow \
H ^ {n+} 1 ( X _ {0} ) \rightarrow H ^ {n+} 1 ( X _ {t} ) \rightarrow 0
$$
is exact. The monodromy transformation $ T $
acts trivially on $ H ^ {i} ( X _ {t} ) $
for $ i \neq n $
and its action on $ H ^ {n} ( X _ {t} ) $
is given by the Picard–Lefschetz formula: For $ z \in H ^ {n} ( X _ {t} ) $,
$$
T _ {z} = z \pm ( z , \delta _ {x} ) \delta _ {x} .
$$
The sign in this formula and the values of $ ( \delta _ {x} , \delta _ {x} ) $
are collected in the table.
<tbody> </tbody> $ n \mathop{\rm mod} 4 $
| $ 0 $
| $ 1 $
| $ 2 $
| $ 3 $
| $ \pm $
| $ - $
| $ - $
| $ + $
| $ + $
| $ ( \delta _ {x} , \delta _ {x} ) $
| $ 2 $
| $ 0 $
| $ - 2 $
| $ 0 $
|
|
A monodromy transformation preserves the intersection form on $ H ^ {n} ( X _ {t} ) $.
Vanishing cycles and monodromy transformations are used in the Picard–Lefschetz theory, associating the cohomology space of a projective complex manifold and its hyperplane sections. Let $ X \subset P ^ {N} $
be a smooth manifold of dimension $ n + 1 $,
and let $ \{ X _ {t} \} $,
$ t \in P ^ {1} $,
be a pencil of hyperplane sections of $ X $
with basic set (axis of the pencil) $ Y \subset X $;
let the following conditions be satisfied: a) $ Y $
is a smooth submanifold in $ X $;
b) there is a finite set $ S \subset P ^ {1} $
such that $ X _ {t} $
is smooth for $ t \in P ^ {1} \setminus S $;
and c) for $ s \in S $
the manifold $ X _ {s} $
has a unique non-degenerate quadratic singular point $ x _ {s} $,
where $ x _ {s} \in Y $.
Pencils with these properties (Lefschetz pencils) always exist. Let $ \sigma : \overline{X}\; \rightarrow X $
be a monoidal transformation with centre on the axis $ Y $
of the pencil, and let $ f : \overline{X}\; \rightarrow P ^ {1} $
be the morphism defined by the pencil $ \{ X _ {t} \} $;
here $ f ^ { - 1 } ( t) \cong X _ {t} $
for all $ t \in P ^ {1} $.
Let a point $ 0 \in P ^ {1} \setminus S $
be fixed; then the monodromy transformation gives an action of $ \pi _ {1} ( P ^ {1} \setminus S , 0 ) $
on $ H ^ {i} ( X _ {0} ) $(
non-trivial only for $ i = n $).
To describe the action of the monodromy on $ H ^ {n} ( X _ {0} ) $
one chooses points $ s ^ \prime $,
situated near $ s \in S $,
and paths $ \gamma _ {s} ^ \prime $
leading from $ 0 $
to $ s ^ \prime $.
Let $ \gamma _ {s} \in \pi _ {1} ( p ^ {1} \setminus S , 0 ) $
be the loop constructed as follows: first go along $ \gamma _ {s} ^ \prime $,
then once round $ s $
and, finally, return along $ \gamma _ {s} ^ \prime $
to $ 0 $.
In addition, let $ \delta _ {s} $
be a cycle vanishing at $ x _ {s} $(
more precisely, take a vanishing cycle in $ H ^ {n} ( X _ {s ^ \prime } ) $
and transfer it to $ H ^ {n} ( X _ {0} ) $
by means of the monodromy transformation corresponding to the path $ \gamma _ {s} ^ \prime $).
Finally, let $ E \subset H ^ {n} ( X _ {0} , \mathbf Q ) $
be the subspace generated by the vanishing cycles $ \delta _ {s} $,
$ s \in S $(
the vanishing cohomology space). Then the following hold.
1) $ \pi _ {1} ( P ^ {1} \setminus S , 0 ) $
is generated by the elements $ \gamma _ {s} $,
$ s \in S $;
2) the action of $ \gamma _ {s} $
is given by the formula
$$
\gamma _ {s} ( z ) = z \pm ( z , \delta _ {s} ) \delta _ {s} ;
$$
3) the space $ E \subset H ^ {n} ( X _ {0} ) $
is invariant under the action of the monodromy group $ \pi _ {1} ( P ^ {1} \setminus S , 0 ) $;
4) the space of elements in $ H ^ {n} ( X _ {0} ) $
that are invariant relative to monodromy coincides with the orthogonal complement of $ E $
relative to the intersection form on $ H ^ {n} ( X _ {0} ) $,
and also with the images of the natural homomorphisms $ H _ {n} ( \overline{X}\; ) \rightarrow H _ {n} ( X _ {0} ) $
and $ H ^ {n} ( X ) \rightarrow H ^ {n} ( X _ {0} ) $;
5) the vanishing cycles $ \pm \delta _ {s} $
are conjugate (up to sign) under the action of $ \pi _ {1} ( P ^ {1} \setminus S , 0 ) $;
6) the action of $ \pi _ {1} ( P ^ {1} \setminus S , 0 ) $
on $ E $
is absolutely irreducible.
The formalism of vanishing cycles, monodromy transformations and the Picard–Lefschetz theory has also been constructed for $ l $-
adic cohomology spaces of algebraic varieties over any field (see [3]).
References
[1] | V.I. Arnol'd, "Normal forms of functions in neighbourhoods of degenerate critical points" Russian Math. Surveys , 29 : 2 (1974) pp. 10–50 Uspekhi Mat. Nauk , 29 : 2 (1974) pp. 11–49 Zbl 0304.57018 Zbl 0298.57022 |
[2] | J. Milnor, "Singular points of complex hypersurfaces" , Princeton Univ. Press (1968) MR0239612 Zbl 0184.48405 |
[3] | P. Deligne (ed.) N.M. Katz (ed.) , Groupes de monodromie en géométrie algébrique. SGA 7.II , Lect. notes in math. , 340 , Springer (1973) MR0354657 |
[4] | C.H. Clemens, "Picard–Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities" Trans. Amer. Math. Soc. , 136 (1969) pp. 93–108 MR0233814 Zbl 0185.51302 |
[5] | W. Schmid, "Variation of Hodge structure: the singularities of the period mapping" Invent. Math. , 22 (1973) pp. 211–319 MR0382272 Zbl 0278.14003 |
[6] | J. Steenbrink, "Limits of Hodge structures" Invent. Math. , 31 (1976) pp. 229–257 MR0429885 Zbl 0303.14002 |
[7] | J.H.M. Steenbrink, "Mixed Hodge structure on the vanishing cohomology" P. Holm (ed.) , Real and Complex Singularities (Oslo, 1976). Proc. Nordic Summer School , Sijthoff & Noordhoff (1977) pp. 524–563 MR0485870 Zbl 0373.14007 |
[8] | S. Lefschetz, "L'analysis situs et la géométrie algébrique" , Gauthier-Villars (1924) MR0033557 MR1520618 |
[9] | S. Lefschetz, "A page of mathematical autobiography" Bull. Amer. Math. Soc. , 74 : 5 (1968) pp. 854–879 MR0240803 Zbl 0187.18601 |