|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | ''over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s0868301.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s0868303.png" />-split group'' | + | {{TEX|done}} |
| + | ''over a field $ k $ , |
| + | $ k $ - |
| + | split group'' |
| | | |
− | A [[Linear algebraic group|linear algebraic group]] defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s0868304.png" /> and containing a [[Borel subgroup|Borel subgroup]] that is split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s0868305.png" />. Here a connected solvable linear algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s0868306.png" /> is called split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s0868307.png" /> if it is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s0868308.png" /> and has a composition series (cf. [[Composition sequence|Composition sequence]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s0868309.png" /> such that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683010.png" /> are connected algebraic subgroups defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683011.png" /> and each quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683012.png" /> is isomorphic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683013.png" /> to either a one-dimensional torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683014.png" /> or to the additive one-dimensional group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683015.png" />. In particular, an [[Algebraic torus|algebraic torus]] is split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683016.png" /> if and only if it is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683017.png" /> and is isomorphic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683018.png" /> to the direct product of copies of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683019.png" />. For connected solvable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683020.png" />-split groups the [[Borel fixed-point theorem|Borel fixed-point theorem]] holds. A reductive linear algebraic group defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683021.png" /> is split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683022.png" /> if and only if it has a maximal torus split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683023.png" />, that is, if its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683024.png" />-rank coincides with its rank (see [[Rank of an algebraic group|Rank of an algebraic group]]; [[Reductive group|Reductive group]]). The image of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683025.png" />-split group under any rational homomorphism defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683026.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683027.png" />-split group. Every linear algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683028.png" /> defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683029.png" /> is split over an algebraic closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683030.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683031.png" /> is also reductive or solvable and connected, then it is split over some finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683032.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683033.png" /> is a perfect field, then a connected solvable linear algebraic group defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683034.png" /> is split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683035.png" /> if and only if it can be reduced to triangular form over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683036.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683037.png" />, then a linear algebraic group defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683038.png" /> is split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683039.png" /> if and only if its Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683040.png" /> is a split (or decomposable) Lie algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683041.png" />; by definition, the latter means that the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683042.png" /> has a split Cartan subalgebra, that is, a [[Cartan subalgebra|Cartan subalgebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683043.png" /> for which all eigenvalues of every operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683045.png" />, belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683046.png" />. | + | A [[Linear algebraic group|linear algebraic group]] defined over $ k $ |
| + | and containing a [[Borel subgroup|Borel subgroup]] that is split over $ k $ . |
| + | Here a connected solvable linear algebraic group $ B $ |
| + | is called split over $ k $ |
| + | if it is defined over $ k $ |
| + | and has a composition series (cf. [[Composition sequence|Composition sequence]]) $ B = B _{0} \supset B _{1} \supset \dots \supset B _{t} = \{ 1 \} $ |
| + | such that the $ B _{i} $ |
| + | are connected algebraic subgroups defined over $ k $ |
| + | and each quotient group $ B _{i} /B _ {i + 1} $ |
| + | is isomorphic over $ k $ |
| + | to either a one-dimensional torus $ G _{m} \cong \mathop{\rm GL}\nolimits _{1} $ |
| + | or to the additive one-dimensional group $ G _{a} $ . |
| + | In particular, an [[Algebraic torus|algebraic torus]] is split over $ k $ |
| + | if and only if it is defined over $ k $ |
| + | and is isomorphic over $ k $ |
| + | to the direct product of copies of the group $ G _{m} $ . |
| + | For connected solvable $ k $ - |
| + | split groups the [[Borel fixed-point theorem|Borel fixed-point theorem]] holds. A reductive linear algebraic group defined over $ k $ |
| + | is split over $ k $ |
| + | if and only if it has a maximal torus split over $ k $ , |
| + | that is, if its $ k $ - |
| + | rank coincides with its rank (see [[Rank of an algebraic group|Rank of an algebraic group]]; [[Reductive group|Reductive group]]). The image of a $ k $ - |
| + | split group under any rational homomorphism defined over $ k $ |
| + | is a $ k $ - |
| + | split group. Every linear algebraic group $ G $ |
| + | defined over a field $ k $ |
| + | is split over an algebraic closure of $ k $ ; |
| + | if $ G $ |
| + | is also reductive or solvable and connected, then it is split over some finite extension of $ k $ . |
| + | If $ k $ |
| + | is a perfect field, then a connected solvable linear algebraic group defined over $ k $ |
| + | is split over $ k $ |
| + | if and only if it can be reduced to triangular form over $ k $ . |
| + | If $ \mathop{\rm char}\nolimits \ k = 0 $ , |
| + | then a linear algebraic group defined over $ k $ |
| + | is split over $ k $ |
| + | if and only if its Lie algebra $ L $ |
| + | is a split (or decomposable) Lie algebra over $ k $ ; |
| + | by definition, the latter means that the Lie algebra $ L $ |
| + | has a split Cartan subalgebra, that is, a [[Cartan subalgebra|Cartan subalgebra]] $ H \subset L $ |
| + | for which all eigenvalues of every operator $ \mathop{\rm ad}\nolimits _{L} \ h $ , |
| + | $ h \in H $ , |
| + | belong to $ k $ . |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683047.png" /> is the real Lie group of real points of a semi-simple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683048.png" />-split algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683049.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683050.png" /> is the complexification of the Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683051.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683052.png" /> is called a normal real form of the complex Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683053.png" />.
| |
| | | |
− | There exist quasi-split groups (cf. [[Quasi-split group|Quasi-split group]]) over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683054.png" /> that are not split groups over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683055.png" />; the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683056.png" /> is an example for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086830/s08683057.png" />. | + | If $ G _ {\mathbf R} $ |
| + | is the real Lie group of real points of a semi-simple $ \mathbf R $ - |
| + | split algebraic group $ G $ |
| + | and if $ G _ {\mathbf C} $ |
| + | is the complexification of the Lie group $ G _ {\mathbf R} $ , |
| + | then $ G _ {\mathbf R} $ |
| + | is called a normal real form of the complex Lie group $ G _ {\mathbf C} $ . |
| + | |
| + | |
| + | There exist quasi-split groups (cf. [[Quasi-split group|Quasi-split group]]) over a field $ k $ |
| + | that are not split groups over $ k $ ; |
| + | the group $ \mathop{\rm SO}\nolimits (3,\ 1) $ |
| + | is an example for $ k = \mathbf R $ . |
| + | |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, J. Tits, "Groupes réductifs" ''Publ. Math. IHES'' , '''27''' (1965) pp. 55–150</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Yu.I. Merzlyakov, "Rational groups" , Moscow (1980) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, J. Tits, "Groupes réductifs" ''Publ. Math. IHES'' , '''27''' (1965) pp. 55–150 {{MR|0207712}} {{ZBL|0145.17402}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Yu.I. Merzlyakov, "Rational groups" , Moscow (1980) (In Russian) {{MR|0602700}} {{ZBL|0518.20032}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975) {{MR|0396773}} {{ZBL|0325.20039}} </TD></TR></table> |
over a field $ k $ ,
$ k $ -
split group
A linear algebraic group defined over $ k $
and containing a Borel subgroup that is split over $ k $ .
Here a connected solvable linear algebraic group $ B $
is called split over $ k $
if it is defined over $ k $
and has a composition series (cf. Composition sequence) $ B = B _{0} \supset B _{1} \supset \dots \supset B _{t} = \{ 1 \} $
such that the $ B _{i} $
are connected algebraic subgroups defined over $ k $
and each quotient group $ B _{i} /B _ {i + 1} $
is isomorphic over $ k $
to either a one-dimensional torus $ G _{m} \cong \mathop{\rm GL}\nolimits _{1} $
or to the additive one-dimensional group $ G _{a} $ .
In particular, an algebraic torus is split over $ k $
if and only if it is defined over $ k $
and is isomorphic over $ k $
to the direct product of copies of the group $ G _{m} $ .
For connected solvable $ k $ -
split groups the Borel fixed-point theorem holds. A reductive linear algebraic group defined over $ k $
is split over $ k $
if and only if it has a maximal torus split over $ k $ ,
that is, if its $ k $ -
rank coincides with its rank (see Rank of an algebraic group; Reductive group). The image of a $ k $ -
split group under any rational homomorphism defined over $ k $
is a $ k $ -
split group. Every linear algebraic group $ G $
defined over a field $ k $
is split over an algebraic closure of $ k $ ;
if $ G $
is also reductive or solvable and connected, then it is split over some finite extension of $ k $ .
If $ k $
is a perfect field, then a connected solvable linear algebraic group defined over $ k $
is split over $ k $
if and only if it can be reduced to triangular form over $ k $ .
If $ \mathop{\rm char}\nolimits \ k = 0 $ ,
then a linear algebraic group defined over $ k $
is split over $ k $
if and only if its Lie algebra $ L $
is a split (or decomposable) Lie algebra over $ k $ ;
by definition, the latter means that the Lie algebra $ L $
has a split Cartan subalgebra, that is, a Cartan subalgebra $ H \subset L $
for which all eigenvalues of every operator $ \mathop{\rm ad}\nolimits _{L} \ h $ ,
$ h \in H $ ,
belong to $ k $ .
If $ G _ {\mathbf R} $
is the real Lie group of real points of a semi-simple $ \mathbf R $ -
split algebraic group $ G $
and if $ G _ {\mathbf C} $
is the complexification of the Lie group $ G _ {\mathbf R} $ ,
then $ G _ {\mathbf R} $
is called a normal real form of the complex Lie group $ G _ {\mathbf C} $ .
There exist quasi-split groups (cf. Quasi-split group) over a field $ k $
that are not split groups over $ k $ ;
the group $ \mathop{\rm SO}\nolimits (3,\ 1) $
is an example for $ k = \mathbf R $ .
References