Difference between revisions of "Acceptance-rejection method"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | ||
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
+ | |||
+ | Out of 112 formulas, 112 were replaced by TEX code.--> | ||
+ | |||
+ | {{TEX|semi-auto}}{{TEX|done}} | ||
Introduced by J. von Neumann [[#References|[a8]]], this is the most adaptable method for sampling from complicated distributions (cf. also [[Sample|Sample]]; [[Distribution|Distribution]]). It works as follows. | Introduced by J. von Neumann [[#References|[a8]]], this is the most adaptable method for sampling from complicated distributions (cf. also [[Sample|Sample]]; [[Distribution|Distribution]]). It works as follows. | ||
− | Let | + | Let $f ( x )$ be a given probability density (cf. also [[Density of a probability distribution|Density of a probability distribution]]), and let $h ( x )$ be a function such that $f ( x ) \leq h ( x )$ within the range of $f ( x )$. If the integral of $h ( x )$ over this range is a finite number $\alpha$, then $g ( x ) = h ( x ) / \alpha$ is a probability density function, and the following procedure is valid: |
− | 1) Take a random sample | + | 1) Take a random sample $X$ from the distribution with probability density $g ( x ) = h ( x ) / \alpha$. |
− | 2) Generate a uniform random deviate | + | 2) Generate a uniform random deviate $U$ between zero and one. If $U \leq f ( X ) / h ( X )$, accept $X$ as a sample from the distribution $f ( x )$. Otherwise reject $X$ and go back to Step 1. |
− | The ease of the method depends on the following properties of the hat function | + | The ease of the method depends on the following properties of the hat function $h ( x )$: |
− | A) One has to select a hat function | + | A) One has to select a hat function $h ( x )$ from which it is easy to sample. Examples are given below. |
− | B) The parameters of the hat function have to be determined in such a way that the area | + | B) The parameters of the hat function have to be determined in such a way that the area $\alpha$ below $h ( x )$ becomes minimal. |
− | Optimal hat functions can be calculated by analytical methods. Assume that the hat function touches | + | Optimal hat functions can be calculated by analytical methods. Assume that the hat function touches $f ( x )$ at two points $L$ (left) and $R$ (right), where $L < R$. Furthermore, suppose that the hat function depends on two parameters, called $m$ and $s$. Thus |
− | + | \begin{equation} \tag{a1} f ( L ) = \alpha g ( L ; m , s ) , f ( R ) = \alpha g ( R ; m , s ), \end{equation} | |
− | and | + | and $f ( x ) \leq \alpha g ( x ; m , s )$ for all other $x$. Since $L$ and $R$ are local maxima of $f ( x ) / \operatorname { g } ( x ; m , s )$, one has the necessary conditions |
− | + | \begin{equation} \tag{a2} \frac { f ^ { \prime } ( L ) } { f ( L ) } = \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } \end{equation} | |
and | and | ||
− | + | \begin{equation} \tag{a3} \frac { f ^ { \prime } ( R ) } { f ( R ) } = \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }. \end{equation} | |
− | If | + | If $L$ and $R$ are uniquely determined, they should satisfy the sufficient conditions |
− | < | + | \begin{equation*} \frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }. \end{equation*} |
− | Otherwise, the first derivative of | + | Otherwise, the first derivative of $\operatorname { ln } ( f ( x ) / g ( x ; m , s ) )$ has to be discussed in detail. |
− | Equations (a1), (a2) and (a3) are four equations for the determination of | + | Equations (a1), (a2) and (a3) are four equations for the determination of $L$, $R$, $m$, and $s$. Assuming that $L$, $R$ and $m$ can be expressed as functions of $s$, one has to minimize |
− | + | \begin{equation} \tag{a4} \alpha ( s ) = \frac { f ( L ( s ) ) } { g ( L ( s ) ; m ( s ) , s ) } = \frac { f ( R ( s ) ) } { g ( R ( s ) ; m ( s ) , s ) }. \end{equation} | |
This leads to the necessary conditions | This leads to the necessary conditions | ||
− | + | \begin{equation*} - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d L } \operatorname { ln } \frac { f ( L ) } { g ( L ; m , s ) } \frac { d L } { d s } + \end{equation*} | |
− | + | \begin{equation*} + \frac { d } { d m } \operatorname { ln } g ( L ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( L ; m , s ) = 0 , - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d R } \operatorname { ln } \frac { f ( R ) } { g ( R ; m , s ) } \frac { d R } { d s }+ \end{equation*} | |
− | + | \begin{equation*} + \frac { d } { d m } \operatorname { ln } g ( R ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( R ; m , s ) = 0. \end{equation*} | |
− | The first expression in each line is zero, by (a2) and (a3). Solving both equations for | + | The first expression in each line is zero, by (a2) and (a3). Solving both equations for $dm / \ ds$, and comparing, yields the fundamental relation |
− | + | \begin{equation} \tag{a5} \frac { d \operatorname { ln } g ( L ; m , s ) } { d m } \frac { d \operatorname { ln } g ( R ; m , s ) } { d s }= \end{equation} | |
− | + | \begin{equation*} = \frac { d \operatorname { ln } g ( R ; m , s ) } { d m } \frac { d \operatorname { ln } g ( L ; m , s ) } { d s }. \end{equation*} | |
− | (a1), (a2), (a3) and (a5) contain five conditions for finding candidates | + | (a1), (a2), (a3) and (a5) contain five conditions for finding candidates $L$, $R$, $m$, $s$ and $\alpha$. |
==Examples.== | ==Examples.== | ||
Line 55: | Line 63: | ||
===Triangular hat functions.=== | ===Triangular hat functions.=== | ||
− | + | \begin{equation*} g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m, } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s. } \end{array} \right. \end{equation*} | |
− | Samples may be obtained as | + | Samples may be obtained as $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$. The fundamental identity (a5) leads to $s = R - L$. With its help all constants $L$, $R$, $m$, $s$, and $\alpha$ can be determined. |
===Double exponential hat functions.=== | ===Double exponential hat functions.=== | ||
The double exponential (or Laplace) distribution is given by | The double exponential (or Laplace) distribution is given by | ||
− | + | \begin{equation*} g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { x - m } { s } ) } & { \text { for } x \leq m, } \\ { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { m - x } { s } ) } & { \text { for } x \geq m. } \end{array} \right. \end{equation*} | |
(See also [[Laplace distribution|Laplace distribution]].) | (See also [[Laplace distribution|Laplace distribution]].) | ||
− | Samples are obtained as | + | Samples are obtained as $X \leftarrow m + T s E$, where $E$ is a standard exponential deviate and $T$ a random sign $\pm$. The fundamental identity (a5) leads to $2 s = R - L$. |
− | ===Student- | + | ===Student-$t$ hat functions.=== |
Its probability density function is given as | Its probability density function is given as | ||
− | + | \begin{equation*} t _ { n } ( x ) = \frac { c _ { n } } { s } \left( 1 + \frac { ( x - m ) ^ { 2 } } { s ^ { 2 } n } \right) ^ { - ( n + 1 ) / 2 } \end{equation*} | |
− | for < | + | for $- \infty < x < \infty$, $n \geq 1$, where |
− | + | \begin{equation*} c _ { n } = \frac { 1 } { \sqrt { n } B \left( \frac { n } { 2 } , \frac { 1 } { 2 } \right) } = \frac { \Gamma \left( \frac { n + 1 } { 2 } \right) } { \sqrt { n \pi } \Gamma \left( \frac { n } { 2 } \right) }. \end{equation*} | |
(See also [[Student distribution|Student distribution]].) | (See also [[Student distribution|Student distribution]].) | ||
− | The | + | The $t$-family contains the [[Cauchy distribution|Cauchy distribution]] for $n = 1$ and the [[Normal distribution|normal distribution]] for $n \rightarrow \infty$ as extreme cases. For $n = 2$ and $n = 3$ special sampling methods are available: If $U$ denotes a $( 0,1 )$-uniform random variable, then $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ samples from $t_2$ and values from the $t_3$-distribution can be generated efficiently by the ratio-of-uniforms method of A.J. Kinderman and J.F. Monahan [[#References|[a5]]], which will be discussed subsequently. The fundamental identity (a5) yields $s ^ { 2 } = ( R - m ) ( m - L )$. As before, $L$, $R$, $s$, $m$, and $\alpha$ can be determined explicitly. |
− | The ratio-of-uniforms method was introduced by Kinderman and Monahan for sampling from a density | + | The ratio-of-uniforms method was introduced by Kinderman and Monahan for sampling from a density $f ( x )$. First the table mountain-function is constructed: Let $a$, $b$ and $c$ be real numbers and let $k$ be equal to $1$, but $k = 2$ might be another possible choice for some densities. Then |
− | + | \begin{equation*} y = \left\{ \begin{array} { l l } { \left( \frac { c } { a - x } \right) ^ { k + 1 } } & { \text { for } x \in ( - \infty , a - c ], } \\ { 1 } & { \text { for } x \in [ a - c , a - c + b ], } \\ { \left( \frac { b - c } { x - a } \right) ^ { k + 1 } } & { \text { for } x \in [ a - c + b , \infty ]. } \end{array} \right. \end{equation*} | |
Samples from the area below the table mountain-function are obtained by the transformation | Samples from the area below the table mountain-function are obtained by the transformation | ||
− | + | \begin{equation*} X = \alpha + \frac { b V - c } { U ^ { 1 / k } } , Y = U ^ { 1 / k }. \end{equation*} | |
− | The table mountain-function is taken as a hat function for | + | The table mountain-function is taken as a hat function for $f ( x ) / f$, where $f = \operatorname { max } f ( x )$. In this case the fundamental identity leads to $f ( L ) = f ( R )$ for calculating optimal constants. |
===Squeeze functions.=== | ===Squeeze functions.=== | ||
Step 2 of the acceptance-rejection method can be improved if some lower bound | Step 2 of the acceptance-rejection method can be improved if some lower bound | ||
− | + | \begin{equation*} b ( x ) \leq q ( x ) = \frac { f ( x ) } { h ( x ) } , \text { for all } - \infty < x < \infty, \end{equation*} | |
is known and easy to calculate. Step 2 then changes to: | is known and easy to calculate. Step 2 then changes to: | ||
− | 2') Generate a uniform random deviate | + | 2') Generate a uniform random deviate $U$ between zero and one. If $U \leq b ( X )$, accept $X$ as a sample from the target distribution $f ( x )$. If $U \geq f ( X ) / h ( X )$, reject $X$ and go back to $1$. Otherwise accept $X$. |
Squeeze functions have been constructed in many procedures. See [[#References|[a4]]] for some theory. | Squeeze functions have been constructed in many procedures. See [[#References|[a4]]] for some theory. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> J.H. Ahrens, U. Dieter, "Computer methods for sampling from gamma, beta, Poisson and binomial distributions" ''Computing'' , '''12''' (1974) pp. 223–246</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> L. Devroye, "Non-uniform random variate generation" , Springer (1986)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> U. Dieter, "Optimal acceptance-rejection methods for sampling from various distributions" P.R. Nelson (ed.) , ''The Frontiers of Statistical Computation, Simulation, & Modeling'' , ''Amer. Ser. Math. Management Sci.'' (1987)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> U. Dieter, "Mathematical aspects of various methods for sampling from classical distributions" , ''Proc. 1989 Winter Simulation Conference'' (1989) pp. 477–483</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> A.J. Kinderman, J.F. Monahan, "Computer generation of random variables using the ratio of uniform deviates" ''ACM Trans. Math. Software'' , '''3''' (1977) pp. 257–260</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> D.E. Knuth, "The art of computer programming" , '''2: Seminumerical algorithms''' , Addison-Wesley (1998) (Edition: Third)</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> J. Leydold, "Automatic sampling with the ratio-of-uniform method" ''ACM Trans. Math. Software'' , '''26''' (2000) pp. 78–88</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> J. von Neumann, "Various techniques used in connection with random digits. Monte Carlo methods" ''Nat. Bureau Standards'' , '''12''' (1951) pp. 36–38</td></tr><tr><td valign="top">[a9]</td> <td valign="top"> E. Stadlober, "Sampling from Poisson, binomial and hypergeometric distributions: Ratio of uniforms as a simple and fast alternative" ''Math.–Statist. Sekt. 303 Forschungsgesellschaft Joanneum, Graz, Austria'' (1989)</td></tr><tr><td valign="top">[a10]</td> <td valign="top"> E. Stadlober, "The ratio of uniforms approach for generating discrete random varates" ''J. Comput. Appl. Math.'' , '''31''' : 1 (1990) pp. 181–189</td></tr></table> |
Latest revision as of 18:55, 24 January 2024
Introduced by J. von Neumann [a8], this is the most adaptable method for sampling from complicated distributions (cf. also Sample; Distribution). It works as follows.
Let $f ( x )$ be a given probability density (cf. also Density of a probability distribution), and let $h ( x )$ be a function such that $f ( x ) \leq h ( x )$ within the range of $f ( x )$. If the integral of $h ( x )$ over this range is a finite number $\alpha$, then $g ( x ) = h ( x ) / \alpha$ is a probability density function, and the following procedure is valid:
1) Take a random sample $X$ from the distribution with probability density $g ( x ) = h ( x ) / \alpha$.
2) Generate a uniform random deviate $U$ between zero and one. If $U \leq f ( X ) / h ( X )$, accept $X$ as a sample from the distribution $f ( x )$. Otherwise reject $X$ and go back to Step 1.
The ease of the method depends on the following properties of the hat function $h ( x )$:
A) One has to select a hat function $h ( x )$ from which it is easy to sample. Examples are given below.
B) The parameters of the hat function have to be determined in such a way that the area $\alpha$ below $h ( x )$ becomes minimal.
Optimal hat functions can be calculated by analytical methods. Assume that the hat function touches $f ( x )$ at two points $L$ (left) and $R$ (right), where $L < R$. Furthermore, suppose that the hat function depends on two parameters, called $m$ and $s$. Thus
\begin{equation} \tag{a1} f ( L ) = \alpha g ( L ; m , s ) , f ( R ) = \alpha g ( R ; m , s ), \end{equation}
and $f ( x ) \leq \alpha g ( x ; m , s )$ for all other $x$. Since $L$ and $R$ are local maxima of $f ( x ) / \operatorname { g } ( x ; m , s )$, one has the necessary conditions
\begin{equation} \tag{a2} \frac { f ^ { \prime } ( L ) } { f ( L ) } = \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } \end{equation}
and
\begin{equation} \tag{a3} \frac { f ^ { \prime } ( R ) } { f ( R ) } = \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }. \end{equation}
If $L$ and $R$ are uniquely determined, they should satisfy the sufficient conditions
\begin{equation*} \frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }. \end{equation*}
Otherwise, the first derivative of $\operatorname { ln } ( f ( x ) / g ( x ; m , s ) )$ has to be discussed in detail.
Equations (a1), (a2) and (a3) are four equations for the determination of $L$, $R$, $m$, and $s$. Assuming that $L$, $R$ and $m$ can be expressed as functions of $s$, one has to minimize
\begin{equation} \tag{a4} \alpha ( s ) = \frac { f ( L ( s ) ) } { g ( L ( s ) ; m ( s ) , s ) } = \frac { f ( R ( s ) ) } { g ( R ( s ) ; m ( s ) , s ) }. \end{equation}
This leads to the necessary conditions
\begin{equation*} - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d L } \operatorname { ln } \frac { f ( L ) } { g ( L ; m , s ) } \frac { d L } { d s } + \end{equation*}
\begin{equation*} + \frac { d } { d m } \operatorname { ln } g ( L ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( L ; m , s ) = 0 , - \frac { d } { d s } \operatorname { ln } \alpha ( s ) = - \frac { d } { d R } \operatorname { ln } \frac { f ( R ) } { g ( R ; m , s ) } \frac { d R } { d s }+ \end{equation*}
\begin{equation*} + \frac { d } { d m } \operatorname { ln } g ( R ; m , s ) \frac { d m } { d s } + \frac { d } { d s } \operatorname { ln } g ( R ; m , s ) = 0. \end{equation*}
The first expression in each line is zero, by (a2) and (a3). Solving both equations for $dm / \ ds$, and comparing, yields the fundamental relation
\begin{equation} \tag{a5} \frac { d \operatorname { ln } g ( L ; m , s ) } { d m } \frac { d \operatorname { ln } g ( R ; m , s ) } { d s }= \end{equation}
\begin{equation*} = \frac { d \operatorname { ln } g ( R ; m , s ) } { d m } \frac { d \operatorname { ln } g ( L ; m , s ) } { d s }. \end{equation*}
(a1), (a2), (a3) and (a5) contain five conditions for finding candidates $L$, $R$, $m$, $s$ and $\alpha$.
Examples.
Triangular hat functions.
\begin{equation*} g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m, } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s. } \end{array} \right. \end{equation*}
Samples may be obtained as $X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$. The fundamental identity (a5) leads to $s = R - L$. With its help all constants $L$, $R$, $m$, $s$, and $\alpha$ can be determined.
Double exponential hat functions.
The double exponential (or Laplace) distribution is given by
\begin{equation*} g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { x - m } { s } ) } & { \text { for } x \leq m, } \\ { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { m - x } { s } ) } & { \text { for } x \geq m. } \end{array} \right. \end{equation*}
(See also Laplace distribution.)
Samples are obtained as $X \leftarrow m + T s E$, where $E$ is a standard exponential deviate and $T$ a random sign $\pm$. The fundamental identity (a5) leads to $2 s = R - L$.
Student-$t$ hat functions.
Its probability density function is given as
\begin{equation*} t _ { n } ( x ) = \frac { c _ { n } } { s } \left( 1 + \frac { ( x - m ) ^ { 2 } } { s ^ { 2 } n } \right) ^ { - ( n + 1 ) / 2 } \end{equation*}
for $- \infty < x < \infty$, $n \geq 1$, where
\begin{equation*} c _ { n } = \frac { 1 } { \sqrt { n } B \left( \frac { n } { 2 } , \frac { 1 } { 2 } \right) } = \frac { \Gamma \left( \frac { n + 1 } { 2 } \right) } { \sqrt { n \pi } \Gamma \left( \frac { n } { 2 } \right) }. \end{equation*}
(See also Student distribution.)
The $t$-family contains the Cauchy distribution for $n = 1$ and the normal distribution for $n \rightarrow \infty$ as extreme cases. For $n = 2$ and $n = 3$ special sampling methods are available: If $U$ denotes a $( 0,1 )$-uniform random variable, then $X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$ samples from $t_2$ and values from the $t_3$-distribution can be generated efficiently by the ratio-of-uniforms method of A.J. Kinderman and J.F. Monahan [a5], which will be discussed subsequently. The fundamental identity (a5) yields $s ^ { 2 } = ( R - m ) ( m - L )$. As before, $L$, $R$, $s$, $m$, and $\alpha$ can be determined explicitly.
The ratio-of-uniforms method was introduced by Kinderman and Monahan for sampling from a density $f ( x )$. First the table mountain-function is constructed: Let $a$, $b$ and $c$ be real numbers and let $k$ be equal to $1$, but $k = 2$ might be another possible choice for some densities. Then
\begin{equation*} y = \left\{ \begin{array} { l l } { \left( \frac { c } { a - x } \right) ^ { k + 1 } } & { \text { for } x \in ( - \infty , a - c ], } \\ { 1 } & { \text { for } x \in [ a - c , a - c + b ], } \\ { \left( \frac { b - c } { x - a } \right) ^ { k + 1 } } & { \text { for } x \in [ a - c + b , \infty ]. } \end{array} \right. \end{equation*}
Samples from the area below the table mountain-function are obtained by the transformation
\begin{equation*} X = \alpha + \frac { b V - c } { U ^ { 1 / k } } , Y = U ^ { 1 / k }. \end{equation*}
The table mountain-function is taken as a hat function for $f ( x ) / f$, where $f = \operatorname { max } f ( x )$. In this case the fundamental identity leads to $f ( L ) = f ( R )$ for calculating optimal constants.
Squeeze functions.
Step 2 of the acceptance-rejection method can be improved if some lower bound
\begin{equation*} b ( x ) \leq q ( x ) = \frac { f ( x ) } { h ( x ) } , \text { for all } - \infty < x < \infty, \end{equation*}
is known and easy to calculate. Step 2 then changes to:
2') Generate a uniform random deviate $U$ between zero and one. If $U \leq b ( X )$, accept $X$ as a sample from the target distribution $f ( x )$. If $U \geq f ( X ) / h ( X )$, reject $X$ and go back to $1$. Otherwise accept $X$.
Squeeze functions have been constructed in many procedures. See [a4] for some theory.
References
[a1] | J.H. Ahrens, U. Dieter, "Computer methods for sampling from gamma, beta, Poisson and binomial distributions" Computing , 12 (1974) pp. 223–246 |
[a2] | L. Devroye, "Non-uniform random variate generation" , Springer (1986) |
[a3] | U. Dieter, "Optimal acceptance-rejection methods for sampling from various distributions" P.R. Nelson (ed.) , The Frontiers of Statistical Computation, Simulation, & Modeling , Amer. Ser. Math. Management Sci. (1987) |
[a4] | U. Dieter, "Mathematical aspects of various methods for sampling from classical distributions" , Proc. 1989 Winter Simulation Conference (1989) pp. 477–483 |
[a5] | A.J. Kinderman, J.F. Monahan, "Computer generation of random variables using the ratio of uniform deviates" ACM Trans. Math. Software , 3 (1977) pp. 257–260 |
[a6] | D.E. Knuth, "The art of computer programming" , 2: Seminumerical algorithms , Addison-Wesley (1998) (Edition: Third) |
[a7] | J. Leydold, "Automatic sampling with the ratio-of-uniform method" ACM Trans. Math. Software , 26 (2000) pp. 78–88 |
[a8] | J. von Neumann, "Various techniques used in connection with random digits. Monte Carlo methods" Nat. Bureau Standards , 12 (1951) pp. 36–38 |
[a9] | E. Stadlober, "Sampling from Poisson, binomial and hypergeometric distributions: Ratio of uniforms as a simple and fast alternative" Math.–Statist. Sekt. 303 Forschungsgesellschaft Joanneum, Graz, Austria (1989) |
[a10] | E. Stadlober, "The ratio of uniforms approach for generating discrete random varates" J. Comput. Appl. Math. , 31 : 1 (1990) pp. 181–189 |
Acceptance-rejection method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Acceptance-rejection_method&oldid=18274