|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t0933301.png" /> be an associative ring with unit, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t0933302.png" /> a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t0933303.png" />-module. The torsion subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t0933304.png" /> is defined as
| + | <!-- |
| + | t0933301.png |
| + | $#A+1 = 71 n = 0 |
| + | $#C+1 = 71 : ~/encyclopedia/old_files/data/T093/T.0903330 Torsion submodule |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t0933305.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t0933306.png" /></td> </tr></table>
| + | Let $ R $ |
| + | be an associative ring with unit, and $ M $ |
| + | a left $ R $-module. The torsion subgroup $ T( M) $ |
| + | is defined as |
| | | |
− | Here a regular element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t0933307.png" /> is an element that is not a zero divisor (neither left nor right).
| + | $$ |
| + | T( M) = |
| + | \{ {x \in M } : { |
| + | \operatorname{Ann} _ {R} ( x) \textrm{ contains a regular element } } |
| + | \} . |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t0933308.png" /> is left Ore (cf. below and [[Associative rings and algebras|Associative rings and algebras]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t0933309.png" /> is a submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333010.png" />, called the torsion submodule. A module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333011.png" /> is torsion free if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333012.png" />. A module is torsion if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333013.png" />.
| + | Here a regular element $ r \in R $ |
| + | is an element that is not a zero divisor (neither left nor right). |
| | | |
− | Quite generally, a torsion theory for an Abelian category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333014.png" /> is a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333015.png" /> of subclasses of the objects of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333016.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333017.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333021.png" /> are maximal with this property, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333022.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333024.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333025.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333026.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333027.png" />.
| + | If $ R $ |
| + | is left Ore (cf. below and [[Associative rings and algebras|Associative rings and algebras]]), then $ T( M) $ |
| + | is a submodule of $ M $, |
| + | called the torsion submodule. A module $ M $ |
| + | is torsion free if $ T( M) = \{ 0 \} $. |
| + | A module is torsion if $ T( M) = M $. |
| | | |
− | The torsion submodules and torsion-free submodules of a left Ore ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333028.png" /> from a torsion theory for the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333029.png" /> of left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333030.png" />-modules.
| + | Quite generally, a torsion theory for an Abelian category $ {\mathcal C} $ |
| + | is a pair $ ( {\mathcal T} , {\mathcal F} ) $ |
| + | of subclasses of the objects of $ {\mathcal C} $ |
| + | such that $ \operatorname{Mor} _ {\mathcal C} ( T, F ) = \{ 0 \} $ |
| + | for all $ T \in {\mathcal T} $, |
| + | $ F \in {\mathcal F} $ |
| + | and $ {\mathcal T} $ |
| + | and $ {\mathcal F} $ |
| + | are maximal with this property, i.e. if $ \operatorname{Mor} _ {\mathcal C} ( X, F ) = \{ 0 \} $ |
| + | for all $ F \in {\mathcal F} $, |
| + | then $ X \in {\mathcal T} $, |
| + | and if $ \operatorname{Mor} _ {\mathcal C} ( T, Y) = \{ 0 \} $ |
| + | for all $ T \in {\mathcal T} $, |
| + | then $ Y \in {\mathcal F} $. |
| | | |
− | A radical on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333031.png" /> is a left-exact functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333032.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333033.png" />,
| + | The torsion submodules and torsion-free submodules of a left Ore ring $ R $ |
| + | from a torsion theory for the category $ R \textrm{ - Mod } $ |
| + | of left $ R $-modules. |
| | | |
− | i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333034.png" /> is a submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333035.png" />;
| + | A radical on $ R \textrm{ - Mod } $ |
| + | is a left-exact functor $ \operatorname{Rad} : R \textrm{ - Mod } \rightarrow R \textrm{ - Mod } $ |
| + | such that for all $ M, N \in R \textrm{ - Mod } $, |
| | | |
− | ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333036.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333037.png" />; more precisely, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333038.png" /> is the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333039.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333040.png" />.
| + | i) $ \operatorname{Rad} ( M) $ |
| + | is a submodule of $ M $; |
| | | |
− | iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333041.png" />.
| + | ii) $ f ( \operatorname{Rad} M ) \subset \operatorname{Rad} N $ |
| + | for all $ f \in \Hom {R} ( M, N) $; |
| + | more precisely, $ \operatorname{Rad} ( f ) $ |
| + | is the restriction of $ f $ |
| + | to $ \operatorname{Rad} ( M) \subset M $. |
| | | |
− | A radical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333042.png" /> is a torsion radical or hereditary radical if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333043.png" /> for each submodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333044.png" /> of a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333045.png" />. A torsion radical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333046.png" /> defines a torsion theory for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333047.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333049.png" />. All torsion theories for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333050.png" /> arise this way.
| + | iii) $ \operatorname{Rad} ( M / \operatorname{Rad} ( M) ) = \{ 0 \} $. |
| | | |
− | A left denominator set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333051.png" /> is a submonoid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333052.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333053.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333055.png" />) such that: | + | A radical $ \operatorname{Rad} $ |
| + | is a torsion radical or hereditary radical if $ N \cap \operatorname{Rad} ( M) = \operatorname{Rad} ( N) $ |
| + | for each submodule $ N $ |
| + | of a module $ M $. |
| + | A torsion radical $ \operatorname{Rad} $ |
| + | defines a torsion theory for $ R \textrm{ - Mod } $ |
| + | with $ {\mathcal T} _ {\operatorname{\rm Rad} } = \{ {M \in R \textrm{ - Mod } } : { \operatorname{Rad} ( M) = M } \} $, |
| + | $ {\mathcal F} _ { \operatorname{Rad} } = \{ {M \in R \textrm{ - Mod } } : { \operatorname{Rad} ( M) = 0 } \} $. |
| + | All torsion theories for $ R \textrm{ - Mod } $ |
| + | arise this way. |
| | | |
− | a) (the left Ore condition) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333057.png" /> there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333059.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333060.png" />; | + | A left denominator set of $ R $ |
| + | is a submonoid $ S $ |
| + | of $ R $ (i.e. $ 1 \in S $ |
| + | and $ s _ {1} , s _ {2} \in S \Rightarrow s _ { 1 _ 2 } \in S $) |
| + | such that: |
| | | |
− | b) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333061.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333063.png" />, then there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333064.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333065.png" />.
| + | a) (the left Ore condition) for all $ s _ {1} \in S $, |
| + | $ r _ {1} \in R $ |
| + | there are $ s _ {2} \in S $, |
| + | $ r _ {2} \in R $ |
| + | such that $ s _ {2} r _ {1} = r _ {2} s _ {1} $; |
| | | |
− | If the set of all regular elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333066.png" /> is a left denominator set, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333067.png" /> is called left Ore. A left denominator set is also called a left Ore set.
| + | b) if $ r s = 0 $ |
| + | for $ r \in R $, |
| + | $ s \in S $, |
| + | then there is an $ s ^ \prime \in S $ |
| + | with $ s ^ \prime r = 0 $. |
| | | |
− | A left denominator set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333068.png" /> defines a torsion theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333069.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333070.png" /> by the associated radical functor | + | If the set of all regular elements of $ R $ |
| + | is a left denominator set, then $ R $ |
| + | is called left Ore. A left denominator set is also called a left Ore set. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333071.png" /></td> </tr></table>
| + | A left denominator set $ S $ |
| + | defines a torsion theory $ ( {\mathcal T} _ {s} , {\mathcal F} _ {s} ) $ |
| + | for $ R \textrm{ - Mod } $ |
| + | by the associated radical functor |
| + | |
| + | $$ |
| + | \operatorname{Rad} _ {S} ( M ) = \ |
| + | \{ {x \in M } : { \operatorname{Ann} _ {R} ( x) \cap S \neq \emptyset } \} |
| + | . |
| + | $$ |
| | | |
| This illustrates the links between torsion theories and (non-commutative) localization (theories). For much more about this theme cf. [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]], cf. also [[Fractions, ring of|Fractions, ring of]]. | | This illustrates the links between torsion theories and (non-commutative) localization (theories). For much more about this theme cf. [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]], cf. also [[Fractions, ring of|Fractions, ring of]]. |
Let $ R $
be an associative ring with unit, and $ M $
a left $ R $-module. The torsion subgroup $ T( M) $
is defined as
$$
T( M) =
\{ {x \in M } : {
\operatorname{Ann} _ {R} ( x) \textrm{ contains a regular element } }
\} .
$$
Here a regular element $ r \in R $
is an element that is not a zero divisor (neither left nor right).
If $ R $
is left Ore (cf. below and Associative rings and algebras), then $ T( M) $
is a submodule of $ M $,
called the torsion submodule. A module $ M $
is torsion free if $ T( M) = \{ 0 \} $.
A module is torsion if $ T( M) = M $.
Quite generally, a torsion theory for an Abelian category $ {\mathcal C} $
is a pair $ ( {\mathcal T} , {\mathcal F} ) $
of subclasses of the objects of $ {\mathcal C} $
such that $ \operatorname{Mor} _ {\mathcal C} ( T, F ) = \{ 0 \} $
for all $ T \in {\mathcal T} $,
$ F \in {\mathcal F} $
and $ {\mathcal T} $
and $ {\mathcal F} $
are maximal with this property, i.e. if $ \operatorname{Mor} _ {\mathcal C} ( X, F ) = \{ 0 \} $
for all $ F \in {\mathcal F} $,
then $ X \in {\mathcal T} $,
and if $ \operatorname{Mor} _ {\mathcal C} ( T, Y) = \{ 0 \} $
for all $ T \in {\mathcal T} $,
then $ Y \in {\mathcal F} $.
The torsion submodules and torsion-free submodules of a left Ore ring $ R $
from a torsion theory for the category $ R \textrm{ - Mod } $
of left $ R $-modules.
A radical on $ R \textrm{ - Mod } $
is a left-exact functor $ \operatorname{Rad} : R \textrm{ - Mod } \rightarrow R \textrm{ - Mod } $
such that for all $ M, N \in R \textrm{ - Mod } $,
i) $ \operatorname{Rad} ( M) $
is a submodule of $ M $;
ii) $ f ( \operatorname{Rad} M ) \subset \operatorname{Rad} N $
for all $ f \in \Hom {R} ( M, N) $;
more precisely, $ \operatorname{Rad} ( f ) $
is the restriction of $ f $
to $ \operatorname{Rad} ( M) \subset M $.
iii) $ \operatorname{Rad} ( M / \operatorname{Rad} ( M) ) = \{ 0 \} $.
A radical $ \operatorname{Rad} $
is a torsion radical or hereditary radical if $ N \cap \operatorname{Rad} ( M) = \operatorname{Rad} ( N) $
for each submodule $ N $
of a module $ M $.
A torsion radical $ \operatorname{Rad} $
defines a torsion theory for $ R \textrm{ - Mod } $
with $ {\mathcal T} _ {\operatorname{\rm Rad} } = \{ {M \in R \textrm{ - Mod } } : { \operatorname{Rad} ( M) = M } \} $,
$ {\mathcal F} _ { \operatorname{Rad} } = \{ {M \in R \textrm{ - Mod } } : { \operatorname{Rad} ( M) = 0 } \} $.
All torsion theories for $ R \textrm{ - Mod } $
arise this way.
A left denominator set of $ R $
is a submonoid $ S $
of $ R $ (i.e. $ 1 \in S $
and $ s _ {1} , s _ {2} \in S \Rightarrow s _ { 1 _ 2 } \in S $)
such that:
a) (the left Ore condition) for all $ s _ {1} \in S $,
$ r _ {1} \in R $
there are $ s _ {2} \in S $,
$ r _ {2} \in R $
such that $ s _ {2} r _ {1} = r _ {2} s _ {1} $;
b) if $ r s = 0 $
for $ r \in R $,
$ s \in S $,
then there is an $ s ^ \prime \in S $
with $ s ^ \prime r = 0 $.
If the set of all regular elements of $ R $
is a left denominator set, then $ R $
is called left Ore. A left denominator set is also called a left Ore set.
A left denominator set $ S $
defines a torsion theory $ ( {\mathcal T} _ {s} , {\mathcal F} _ {s} ) $
for $ R \textrm{ - Mod } $
by the associated radical functor
$$
\operatorname{Rad} _ {S} ( M ) = \
\{ {x \in M } : { \operatorname{Ann} _ {R} ( x) \cap S \neq \emptyset } \}
.
$$
This illustrates the links between torsion theories and (non-commutative) localization (theories). For much more about this theme cf. [a1], [a2], [a3], cf. also Fractions, ring of.
References
[a1] | L.H. Rowen, "Ring theory" , 1 , Acad. Press (1988) pp. §3.4 |
[a2] | C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973) pp. §15, §16 |
[a3] | J.S. Golan, "Localization of noncommutative rings" , M. Dekker (1975) |