Namespaces
Variants
Actions

Difference between revisions of "Dimension, additive properties of"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Properties expressing a connection between the dimension of a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d0324601.png" /> that can be represented as the sum of subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d0324602.png" /> with the dimensions of these subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d0324603.png" />. There are several types of additive properties of dimension.
+
<!--
 +
d0324601.png
 +
$#A+1 = 25 n = 0
 +
$#C+1 = 25 : ~/encyclopedia/old_files/data/D032/D.0302460 Dimension, additive properties of
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The countable closed sum theorem. If a normal Hausdorff space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d0324604.png" /> can be represented as a finite or countable sum of closed subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d0324605.png" />, then
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d0324606.png" /></td> </tr></table>
+
Properties expressing a connection between the dimension of a topological space  $  X $
 +
that can be represented as the sum of subspaces  $  X _  \alpha  $
 +
with the dimensions of these subspaces  $  X _  \alpha  $.  
 +
There are several types of additive properties of dimension.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d0324607.png" /> is also perfectly normal or hereditarily paracompact, then
+
The countable closed sum theorem. If a normal Hausdorff space  $  X $
 +
can be represented as a finite or countable sum of closed subsets  $  X _ {i} $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d0324608.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm dim}  X  = \sup _ { i }  \mathop{\rm dim}  X _ {i} .
 +
$$
  
The locally finite closed sum theorem. If a normal Hausdorff space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d0324609.png" /> can be represented as the sum of a locally finite system of closed subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246010.png" />, then
+
If $  X $
 +
is also perfectly normal or hereditarily paracompact, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246011.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm Ind}  X  = \sup _ { i }  \mathop{\rm Ind}  X _ {i} .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246012.png" /> is also perfectly normal and hereditarily paracompact, then
+
The locally finite closed sum theorem. If a normal Hausdorff space  $  X $
 +
can be represented as the sum of a locally finite system of closed subsets  $  X _  \alpha  $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246013.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm dim}  X  = \sup _  \alpha    \mathop{\rm dim}  X _  \alpha  .
 +
$$
  
The addition theorem. If the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246014.png" /> is Hausdorff, hereditarily normal and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246015.png" />, then
+
If $  X $
 +
is also perfectly normal and hereditarily paracompact, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246016.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm Ind}  X  = \sup _  \alpha    \mathop{\rm Ind}  X _  \alpha  .
 +
$$
  
(the Menger–Urysohn formula). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246017.png" /> is also perfectly normal, then
+
The addition theorem. If the space  $  X $
 +
is Hausdorff, hereditarily normal and if  $  X = A \cup B $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246018.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm dim}  X  \leq    \mathop{\rm dim}  A +  \mathop{\rm dim}  B + 1
 +
$$
  
A metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246019.png" /> has dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246020.png" /> if and only if
+
(the Menger–Urysohn formula). If  $  X $
 +
is also perfectly normal, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246021.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm Ind}  X  \leq    \mathop{\rm Ind}  A +  \mathop{\rm Ind}  B + 1.
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246022.png" /> is hereditarily normal and Hausdorff, then for any closed subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246023.png" /> one has
+
A metric space  $  R $
 +
has dimension  $  \mathop{\rm dim}  R \leq  n $
 +
if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246024.png" /></td> </tr></table>
+
$$
 +
= \cup _ {i = 1 } ^ { {n }  + 1 } R _ {i} ,\ \
 +
\mathop{\rm dim}  R _ {i}  \leq  0,\ \
 +
i = 1 \dots n + 1; \  n = 0, 1 , .  . . .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032460/d03246025.png" /></td> </tr></table>
+
If  $  X $
 +
is hereditarily normal and Hausdorff, then for any closed subset  $  F $
 +
one has
  
 +
$$
 +
\mathop{\rm dim}  X  =  \max (  \mathop{\rm dim}  F,  \mathop{\rm dim}  X \setminus  F  ),
 +
$$
  
 +
$$
 +
\mathop{\rm Ind}  X  =  \max (  \mathop{\rm Ind}  F,  \mathop{\rm Ind}  X \setminus  F  ).
 +
$$
  
 
====Comments====
 
====Comments====

Latest revision as of 19:35, 5 June 2020


Properties expressing a connection between the dimension of a topological space $ X $ that can be represented as the sum of subspaces $ X _ \alpha $ with the dimensions of these subspaces $ X _ \alpha $. There are several types of additive properties of dimension.

The countable closed sum theorem. If a normal Hausdorff space $ X $ can be represented as a finite or countable sum of closed subsets $ X _ {i} $, then

$$ \mathop{\rm dim} X = \sup _ { i } \mathop{\rm dim} X _ {i} . $$

If $ X $ is also perfectly normal or hereditarily paracompact, then

$$ \mathop{\rm Ind} X = \sup _ { i } \mathop{\rm Ind} X _ {i} . $$

The locally finite closed sum theorem. If a normal Hausdorff space $ X $ can be represented as the sum of a locally finite system of closed subsets $ X _ \alpha $, then

$$ \mathop{\rm dim} X = \sup _ \alpha \mathop{\rm dim} X _ \alpha . $$

If $ X $ is also perfectly normal and hereditarily paracompact, then

$$ \mathop{\rm Ind} X = \sup _ \alpha \mathop{\rm Ind} X _ \alpha . $$

The addition theorem. If the space $ X $ is Hausdorff, hereditarily normal and if $ X = A \cup B $, then

$$ \mathop{\rm dim} X \leq \mathop{\rm dim} A + \mathop{\rm dim} B + 1 $$

(the Menger–Urysohn formula). If $ X $ is also perfectly normal, then

$$ \mathop{\rm Ind} X \leq \mathop{\rm Ind} A + \mathop{\rm Ind} B + 1. $$

A metric space $ R $ has dimension $ \mathop{\rm dim} R \leq n $ if and only if

$$ R = \cup _ {i = 1 } ^ { {n } + 1 } R _ {i} ,\ \ \mathop{\rm dim} R _ {i} \leq 0,\ \ i = 1 \dots n + 1; \ n = 0, 1 , . . . . $$

If $ X $ is hereditarily normal and Hausdorff, then for any closed subset $ F $ one has

$$ \mathop{\rm dim} X = \max ( \mathop{\rm dim} F, \mathop{\rm dim} X \setminus F ), $$

$$ \mathop{\rm Ind} X = \max ( \mathop{\rm Ind} F, \mathop{\rm Ind} X \setminus F ). $$

Comments

See also Dimension; Dimension theory.

References

[a1] R. Engelking, "Dimension theory" , North-Holland & PWN (1978)
How to Cite This Entry:
Dimension, additive properties of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dimension,_additive_properties_of&oldid=18179
This article was adapted from an original article by B.A. Pasynkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article