Difference between revisions of "Average value, theorem on variations of the"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (Typo) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | a0142301.png | ||
+ | $#A+1 = 8 n = 0 | ||
+ | $#C+1 = 8 : ~/encyclopedia/old_files/data/A014/A.0104230 Average value, theorem on variations of the, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''in statistical mechanics'' | ''in statistical mechanics'' | ||
− | A statement on the variation of the average value of a dynamic magnitude in the [[Gibbs statistical aggregate|Gibbs statistical aggregate]] as a result of an infinitesimal change in the Hamiltonian. The variation of the average depends, generally speaking, on the way of "inclusion" of the change in the Hamiltonian and on the initial conditions. Let a system of many interacting particles (a quantum system or a classical system), that can explicitly be described by a time-independent Hamiltonian | + | A statement on the variation of the average value of a dynamic magnitude in the [[Gibbs statistical aggregate|Gibbs statistical aggregate]] as a result of an infinitesimal change in the Hamiltonian. The variation of the average depends, generally speaking, on the way of "inclusion" of the change in the Hamiltonian and on the initial conditions. Let a system of many interacting particles (a quantum system or a classical system), that can explicitly be described by a time-independent Hamiltonian $ H $, |
+ | be in thermodynamic equilibrium at the initial moment of time $ t \rightarrow - \infty $. | ||
+ | As a result of an adiabatic inclusion of an infinitesimal, time-dependent perturbation of the Hamiltonian | ||
− | + | $$ | |
+ | H \rightarrow H + \delta V (t), | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \delta V (t) = \ | ||
+ | \sum _ {(E) } | ||
+ | e ^ {\epsilon t - iE t } | ||
+ | \delta V _ {E} ,\ \ | ||
+ | \epsilon > 0,\ \ | ||
+ | \epsilon \rightarrow +0, | ||
+ | $$ | ||
− | the Gibbs equilibrium average | + | the Gibbs equilibrium average $ \langle A\rangle $ |
+ | of the explicitly time-independent dynamic variable $ A $ | ||
+ | will change (in a linear approximation with respect to the perturbation) by the magnitude | ||
− | + | $$ | |
+ | \delta \langle A (t) \rangle = \ | ||
+ | - 2 \pi i \sum _ { (E) } | ||
+ | e ^ {\epsilon t - iEt } \ll | ||
+ | A \mid \delta V _ {E} \gg _ {E} ^ {( \mathop{\rm ret} ) } , | ||
+ | $$ | ||
− | where | + | where $ {\ll A \mid \delta {V _ {E} } \gg } _ {E} ^ {( \mathop{\rm ret} ) } $ |
+ | is the Fourier transform of the retarded commutator Green function (cf. [[Green function|Green function]] in statistical mechanics). | ||
The main application of the theorem is in the theory of non-equilibrium irreversible processes (in which one formulation of the theorem is also known as the fluctuation-dissipation theorem), and in deducing the chains and systems of equations for the Green functions from the chains and systems of equations for the correlation functions (cf. [[Correlation function in statistical mechanics|Correlation function in statistical mechanics]]). | The main application of the theorem is in the theory of non-equilibrium irreversible processes (in which one formulation of the theorem is also known as the fluctuation-dissipation theorem), and in deducing the chains and systems of equations for the Green functions from the chains and systems of equations for the correlation functions (cf. [[Correlation function in statistical mechanics|Correlation function in statistical mechanics]]). | ||
Line 19: | Line 50: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Kubo, ''J. Phys. Soc. Japan'' , '''12''' (1957) pp. 570</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.N. Bogolyubov, jr., B.I. Sadovnikov, ''Zh. Eksper. Teoret. Fiz.'' : 43 (1962) pp. 677</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.N. Bogolyubov jr., B.I. Sadovnikov, "Some questions in statistical mechanics" , Moscow (1975) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.V. Tyablikov, "Methods of the quantum theory of magnetism" , Plenum (1967) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Kubo, ''J. Phys. Soc. Japan'' , '''12''' (1957) pp. 570</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.N. Bogolyubov, jr., B.I. Sadovnikov, ''Zh. Eksper. Teoret. Fiz.'' : 43 (1962) pp. 677</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.N. Bogolyubov jr., B.I. Sadovnikov, "Some questions in statistical mechanics" , Moscow (1975) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.V. Tyablikov, "Methods of the quantum theory of magnetism" , Plenum (1967) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.N. Bogolyubov, N.N. Bogolyubov jr., "Introduction to quantum statistical mechanics" , World Sci. (1982)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.N. Bogolyubov, N.N. Bogolyubov jr., "Introduction to quantum statistical mechanics" , World Sci. (1982)</TD></TR></table> |
Latest revision as of 11:18, 25 April 2020
in statistical mechanics
A statement on the variation of the average value of a dynamic magnitude in the Gibbs statistical aggregate as a result of an infinitesimal change in the Hamiltonian. The variation of the average depends, generally speaking, on the way of "inclusion" of the change in the Hamiltonian and on the initial conditions. Let a system of many interacting particles (a quantum system or a classical system), that can explicitly be described by a time-independent Hamiltonian $ H $, be in thermodynamic equilibrium at the initial moment of time $ t \rightarrow - \infty $. As a result of an adiabatic inclusion of an infinitesimal, time-dependent perturbation of the Hamiltonian
$$ H \rightarrow H + \delta V (t), $$
where
$$ \delta V (t) = \ \sum _ {(E) } e ^ {\epsilon t - iE t } \delta V _ {E} ,\ \ \epsilon > 0,\ \ \epsilon \rightarrow +0, $$
the Gibbs equilibrium average $ \langle A\rangle $ of the explicitly time-independent dynamic variable $ A $ will change (in a linear approximation with respect to the perturbation) by the magnitude
$$ \delta \langle A (t) \rangle = \ - 2 \pi i \sum _ { (E) } e ^ {\epsilon t - iEt } \ll A \mid \delta V _ {E} \gg _ {E} ^ {( \mathop{\rm ret} ) } , $$
where $ {\ll A \mid \delta {V _ {E} } \gg } _ {E} ^ {( \mathop{\rm ret} ) } $ is the Fourier transform of the retarded commutator Green function (cf. Green function in statistical mechanics).
The main application of the theorem is in the theory of non-equilibrium irreversible processes (in which one formulation of the theorem is also known as the fluctuation-dissipation theorem), and in deducing the chains and systems of equations for the Green functions from the chains and systems of equations for the correlation functions (cf. Correlation function in statistical mechanics).
References
[1] | R. Kubo, J. Phys. Soc. Japan , 12 (1957) pp. 570 |
[2] | N.N. Bogolyubov, jr., B.I. Sadovnikov, Zh. Eksper. Teoret. Fiz. : 43 (1962) pp. 677 |
[3] | N.N. Bogolyubov jr., B.I. Sadovnikov, "Some questions in statistical mechanics" , Moscow (1975) (In Russian) |
[4] | S.V. Tyablikov, "Methods of the quantum theory of magnetism" , Plenum (1967) (Translated from Russian) |
Comments
References
[a1] | N.N. Bogolyubov, N.N. Bogolyubov jr., "Introduction to quantum statistical mechanics" , World Sci. (1982) |
Average value, theorem on variations of the. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Average_value,_theorem_on_variations_of_the&oldid=18163