Namespaces
Variants
Actions

Difference between revisions of "Quasi-symplectic space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A projective space of odd dimension, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q0767201.png" />, in which the following null-systems (cf. [[Zero system|Zero system]]) are defined:
+
<!--
 +
q0767201.png
 +
$#A+1 = 24 n = 0
 +
$#C+1 = 24 : ~/encyclopedia/old_files/data/Q076/Q.0706720 Quasi\AAhsymplectic space
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q0767202.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A projective space of odd dimension,  $  P _ {2n-} 1 $,
 +
in which the following null-systems (cf. [[Zero system|Zero system]]) are defined:
 +
 
 +
$$
 +
u _ {a}  = - x  ^ {m+} a ; \ \
 +
u _ {m+} a  = x  ^ {a} ; \ \
 +
u _ {m+} b  = u _ {n+} b  = 0
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q0767203.png" /></td> </tr></table>
+
$$
 +
u _ {n+} b  = x  ^ {m+} b ; \ \
 +
u _ {m+} b  = - x  ^ {n+} b ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q0767204.png" /></td> </tr></table>
+
$$
 +
m  \leq  b  \leq  n - 1 ; 0 \leq  a  \leq  m - 1 .
 +
$$
  
The first null-system takes points in the space to hyperplanes passing through the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q0767205.png" />-plane
+
The first null-system takes points in the space to hyperplanes passing through the $  ( 2 n - 2 m - 1 ) $-
 +
plane
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q0767206.png" /></td> </tr></table>
+
$$
 +
x  ^ {a}  = x  ^ {m+} a  = 0 ,
 +
$$
  
 
while the second null-system takes points to points of this same plane.
 
while the second null-system takes points to points of this same plane.
  
The plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q0767207.png" /> is called the [[Absolute|absolute]], and the two null-systems are absolute null-systems of the quasi-symplectic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q0767208.png" />. A quasi-symplectic space is a special case of a [[Semi-symplectic space|semi-symplectic space]].
+
The plane $  x  ^ {a} = x  ^ {m+} a = 0 $
 +
is called the [[Absolute|absolute]], and the two null-systems are absolute null-systems of the quasi-symplectic space $  S _ {P _ {2n-} 1 }  ^ {2m-} 1 $.  
 +
A quasi-symplectic space is a special case of a [[Semi-symplectic space|semi-symplectic space]].
  
Collineations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q0767209.png" /> taking the absolute plane to itself have the form
+
Collineations of $  S _ {P _ {2n-} 1 }  ^ {2m-} 1 $
 +
taking the absolute plane to itself have the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672010.png" /></td> </tr></table>
+
$$
 +
{}  ^  \prime  x  ^ {k}  = \sum _  \lambda  U _  \lambda  ^ {k} x  ^  \lambda  ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672011.png" /></td> </tr></table>
+
$$
 +
{}  ^  \prime  x  ^ {u}  = \sum _  \lambda  T _  \lambda  ^ {u} x
 +
^  \lambda  + \sum _  \mu  V _  \mu  ^ {u} x  ^  \mu  ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672012.png" /></td> </tr></table>
+
$$
 +
0  \leq  k , \lambda  \leq  2 m - 2 ,\  2 m - 1  \leq  \mu , u  \leq  2 n - 1 ,
 +
$$
  
and the matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672014.png" /> are symplectic matrices of orders <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672016.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672017.png" /> is a rectangular matrix with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672018.png" /> columns and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672019.png" /> rows.
+
and the matrices $  U _  \lambda  ^ {k} $
 +
and $  V _  \mu  ^ {u} $
 +
are symplectic matrices of orders $  2 m $
 +
and $  2 n - 2 m $;  
 +
$  T _  \lambda  ^ {u} $
 +
is a rectangular matrix with $  2 m $
 +
columns and $  2 n - 2 m $
 +
rows.
  
These collineations are called quasi-symplectic transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672020.png" />. They commute with the given null-systems of the space. The quasi-symplectic invariant of two lines is defined by analogy with the symplectic invariant of lines of a symplectic space.
+
These collineations are called quasi-symplectic transformations of $  S _ {P _ {2n-} 1 }  ^ {2m-} 1 $.  
 +
They commute with the given null-systems of the space. The quasi-symplectic invariant of two lines is defined by analogy with the symplectic invariant of lines of a symplectic space.
  
The quasi-symplectic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672021.png" /> can be obtained from the symplectic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672022.png" /> by limit transition from the absolute of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672023.png" /> to the absolute of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076720/q07672024.png" />. Namely, the first of the null-systems given takes all points of the space into planes passing through the absolute plane, while the second takes all planes into points of this same plane.
+
The quasi-symplectic space $  S _ {P _ {2n-} 1 }  ^ {2m-} 1 $
 +
can be obtained from the symplectic space $  S _ {P _ {2n-} 1 }  $
 +
by limit transition from the absolute of $  S _ {P _ {2n-} 1 }  $
 +
to the absolute of $  S _ {P _ {2n-} 1 }  ^ {2m-} 1 $.  
 +
Namely, the first of the null-systems given takes all points of the space into planes passing through the absolute plane, while the second takes all planes into points of this same plane.
  
 
The quasi-symplectic transformations form a group, which is a Lie group.
 
The quasi-symplectic transformations form a group, which is a Lie group.
Line 35: Line 82:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.A. [B.A. Rozenfel'd] Rosenfel'd,  "A history of non-euclidean geometry" , Springer  (1988)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.A. [B.A. Rozenfel'd] Rosenfel'd,  "A history of non-euclidean geometry" , Springer  (1988)  (Translated from Russian)</TD></TR></table>

Latest revision as of 08:09, 6 June 2020


A projective space of odd dimension, $ P _ {2n-} 1 $, in which the following null-systems (cf. Zero system) are defined:

$$ u _ {a} = - x ^ {m+} a ; \ \ u _ {m+} a = x ^ {a} ; \ \ u _ {m+} b = u _ {n+} b = 0 $$

and

$$ u _ {n+} b = x ^ {m+} b ; \ \ u _ {m+} b = - x ^ {n+} b , $$

$$ m \leq b \leq n - 1 ; \ 0 \leq a \leq m - 1 . $$

The first null-system takes points in the space to hyperplanes passing through the $ ( 2 n - 2 m - 1 ) $- plane

$$ x ^ {a} = x ^ {m+} a = 0 , $$

while the second null-system takes points to points of this same plane.

The plane $ x ^ {a} = x ^ {m+} a = 0 $ is called the absolute, and the two null-systems are absolute null-systems of the quasi-symplectic space $ S _ {P _ {2n-} 1 } ^ {2m-} 1 $. A quasi-symplectic space is a special case of a semi-symplectic space.

Collineations of $ S _ {P _ {2n-} 1 } ^ {2m-} 1 $ taking the absolute plane to itself have the form

$$ {} ^ \prime x ^ {k} = \sum _ \lambda U _ \lambda ^ {k} x ^ \lambda , $$

$$ {} ^ \prime x ^ {u} = \sum _ \lambda T _ \lambda ^ {u} x ^ \lambda + \sum _ \mu V _ \mu ^ {u} x ^ \mu , $$

$$ 0 \leq k , \lambda \leq 2 m - 2 ,\ 2 m - 1 \leq \mu , u \leq 2 n - 1 , $$

and the matrices $ U _ \lambda ^ {k} $ and $ V _ \mu ^ {u} $ are symplectic matrices of orders $ 2 m $ and $ 2 n - 2 m $; $ T _ \lambda ^ {u} $ is a rectangular matrix with $ 2 m $ columns and $ 2 n - 2 m $ rows.

These collineations are called quasi-symplectic transformations of $ S _ {P _ {2n-} 1 } ^ {2m-} 1 $. They commute with the given null-systems of the space. The quasi-symplectic invariant of two lines is defined by analogy with the symplectic invariant of lines of a symplectic space.

The quasi-symplectic space $ S _ {P _ {2n-} 1 } ^ {2m-} 1 $ can be obtained from the symplectic space $ S _ {P _ {2n-} 1 } $ by limit transition from the absolute of $ S _ {P _ {2n-} 1 } $ to the absolute of $ S _ {P _ {2n-} 1 } ^ {2m-} 1 $. Namely, the first of the null-systems given takes all points of the space into planes passing through the absolute plane, while the second takes all planes into points of this same plane.

The quasi-symplectic transformations form a group, which is a Lie group.

References

[1] B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)

Comments

References

[a1] B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)
How to Cite This Entry:
Quasi-symplectic space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-symplectic_space&oldid=18115
This article was adapted from an original article by L.A. Sidorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article