Namespaces
Variants
Actions

Difference between revisions of "Laguerre functions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
l0573001.png
 +
$#A+1 = 6 n = 0
 +
$#C+1 = 6 : ~/encyclopedia/old_files/data/L057/L.0507300 Laguerre functions
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Functions that are solutions of the equation
 
Functions that are solutions of the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057300/l0573001.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
x y  ^ {\prime\prime} + ( \alpha - x + 1 ) y  ^  \prime  + n y  = 0 ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057300/l0573002.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057300/l0573003.png" /> are arbitrary parameters. Laguerre functions can be expressed in terms of the [[Degenerate hypergeometric function|degenerate hypergeometric function]] or in terms of [[Whittaker functions|Whittaker functions]]. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057300/l0573004.png" /> the solutions of equation (*) are called [[Laguerre polynomials|Laguerre polynomials]]. The function
+
where $  \alpha $
 +
and $  n $
 +
are arbitrary parameters. Laguerre functions can be expressed in terms of the [[Degenerate hypergeometric function|degenerate hypergeometric function]] or in terms of [[Whittaker functions|Whittaker functions]]. For $  n = 0 , 1 \dots $
 +
the solutions of equation (*) are called [[Laguerre polynomials|Laguerre polynomials]]. The function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057300/l0573005.png" /></td> </tr></table>
+
$$
 +
e _ {n} ^ {( \alpha ) } ( x)  = x ^ {\alpha / 2 }
 +
e ^ {- x / 2 } L _ {n}  ^  \alpha  ( x) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057300/l0573006.png" /> is a Laguerre polynomial, is sometimes also called a Laguerre function.
+
where $  L _ {n}  ^  \alpha  ( x) $
 +
is a Laguerre polynomial, is sometimes also called a Laguerre function.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Jahnke,  F. Emde,  "Tables of functions with formulae and curves" , Dover, reprint  (1945)  (Translated from German)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Jahnke,  F. Emde,  "Tables of functions with formulae and curves" , Dover, reprint  (1945)  (Translated from German)</TD></TR></table>

Latest revision as of 22:15, 5 June 2020


Functions that are solutions of the equation

$$ \tag{* } x y ^ {\prime\prime} + ( \alpha - x + 1 ) y ^ \prime + n y = 0 , $$

where $ \alpha $ and $ n $ are arbitrary parameters. Laguerre functions can be expressed in terms of the degenerate hypergeometric function or in terms of Whittaker functions. For $ n = 0 , 1 \dots $ the solutions of equation (*) are called Laguerre polynomials. The function

$$ e _ {n} ^ {( \alpha ) } ( x) = x ^ {\alpha / 2 } e ^ {- x / 2 } L _ {n} ^ \alpha ( x) , $$

where $ L _ {n} ^ \alpha ( x) $ is a Laguerre polynomial, is sometimes also called a Laguerre function.

References

[1] E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)
How to Cite This Entry:
Laguerre functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Laguerre_functions&oldid=18040
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article