Difference between revisions of "Sine amplitude"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | s0854901.png | ||
| + | $#A+1 = 10 n = 0 | ||
| + | $#C+1 = 10 : ~/encyclopedia/old_files/data/S085/S.0805490 Sine amplitude, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''elliptic sine'' | ''elliptic sine'' | ||
One of the three basic [[Jacobi elliptic functions|Jacobi elliptic functions]], written as | One of the three basic [[Jacobi elliptic functions|Jacobi elliptic functions]], written as | ||
| − | + | $$ | |
| + | \mathop{\rm sn} u = \mathop{\rm sn} ( u, k) = \sin \mathop{\rm am} u . | ||
| + | $$ | ||
The sine amplitude can be defined by theta-functions or by means of a series in the following way: | The sine amplitude can be defined by theta-functions or by means of a series in the following way: | ||
| − | + | $$ | |
| + | \mathop{\rm sn} u = \mathop{\rm sn} ( u, k) = \ | ||
| + | |||
| + | \frac{\theta _ {3} ( 0) }{\theta _ {2} ^ \prime ( 0) } | ||
| + | |||
| + | \frac{\theta _ {1} ( v) }{\theta _ {0} ( v) } | ||
| + | = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| + | u - ( 1 + k ^ {2} ) | ||
| + | \frac{u ^ {3} }{3! } | ||
| + | + ( 1 + | ||
| + | 14k ^ {2} + k ^ {4} ) | ||
| + | \frac{u ^ {5} }{5! } | ||
| + | - \dots , | ||
| + | $$ | ||
| − | where | + | where $ k $ |
| + | is the modulus of the sine amplitude (usually $ 0 \leq k \leq 1 $) | ||
| + | and $ v = u/2 \omega $, | ||
| + | $ 2 \omega = \pi \theta _ {3} ^ {2} ( 0) $. | ||
| + | When $ k = 0, 1 $, | ||
| + | respectively, $ \mathop{\rm sn} ( u, 0) = \sin u $, | ||
| + | $ \mathop{\rm sn} ( u, 1) = \mathop{\rm tanh} u $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''2''' , Springer (1964) pp. Chapt. 3</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''2''' , Springer (1964) pp. Chapt. 3</TD></TR></table> | ||
Latest revision as of 08:14, 6 June 2020
elliptic sine
One of the three basic Jacobi elliptic functions, written as
$$ \mathop{\rm sn} u = \mathop{\rm sn} ( u, k) = \sin \mathop{\rm am} u . $$
The sine amplitude can be defined by theta-functions or by means of a series in the following way:
$$ \mathop{\rm sn} u = \mathop{\rm sn} ( u, k) = \ \frac{\theta _ {3} ( 0) }{\theta _ {2} ^ \prime ( 0) } \frac{\theta _ {1} ( v) }{\theta _ {0} ( v) } = $$
$$ = \ u - ( 1 + k ^ {2} ) \frac{u ^ {3} }{3! } + ( 1 + 14k ^ {2} + k ^ {4} ) \frac{u ^ {5} }{5! } - \dots , $$
where $ k $ is the modulus of the sine amplitude (usually $ 0 \leq k \leq 1 $) and $ v = u/2 \omega $, $ 2 \omega = \pi \theta _ {3} ^ {2} ( 0) $. When $ k = 0, 1 $, respectively, $ \mathop{\rm sn} ( u, 0) = \sin u $, $ \mathop{\rm sn} ( u, 1) = \mathop{\rm tanh} u $.
References
| [1] | A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 2 , Springer (1964) pp. Chapt. 3 |
Sine amplitude. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sine_amplitude&oldid=17986