Namespaces
Variants
Actions

Difference between revisions of "Dandelin spheres"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (→‎References: latexify)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
Spheres forming part of the geometrical constructions relating the planimetric definition of the ellipse, hyperbola or parabola with their stereometric definitions. For instance, let two spheres (also known as Dandelin spheres), inscribed in a circular cone, make contact with the surface of the cone along circles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d0301001.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d0301002.png" /> (see Fig.) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d0301003.png" /> be a certain plane passing through two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d0301004.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d0301005.png" />.
+
{{TEX|done}}
 +
Spheres forming part of the geometrical constructions relating the planimetric definition of the ellipse, hyperbola or parabola with their stereometric definitions. For instance, let two spheres (also known as Dandelin spheres), inscribed in a circular cone, make contact with the surface of the cone along circles $c$ and $c'$ (see Fig.) and let $\pi$ be a certain plane passing through two points $F$ and $F'$.
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/d030100a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/d030100a.gif" />
Line 5: Line 6:
 
Figure: d030100a
 
Figure: d030100a
  
If an arbitrary point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d0301006.png" /> is taken on the intersection line of the cone with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d0301007.png" />, and a generatrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d0301008.png" /> is drawn intersecting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d0301009.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d03010010.png" />, then if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d03010011.png" /> varies, the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d03010012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d03010013.png" /> move around the circles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d03010014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d03010015.png" /> while preserving the distance <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d03010016.png" />, i.e. the intersection line will be an ellipse (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d03010017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d03010018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030100/d03010019.png" />). In the case of a hyperbola, Dandelin spheres are located in different sheets.
+
If an arbitrary point $M$ is taken on the intersection line of the cone with $\pi$, and a generatrix $SM$ is drawn intersecting $c$ and $c'$, then if $M$ varies, the points $T$ and $T'$ move around the circles $c$ and $c'$ while preserving the distance $TT'$, i.e. the intersection line will be an ellipse ($MF'+MF=TT'$, $MF'=MT'$ and $MF=MT$). In the case of a hyperbola, Dandelin spheres are located in different sheets.
  
 
Suggested by G. Dandelin in 1822.
 
Suggested by G. Dandelin in 1822.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Modenov,  "Analytic geometry" , Moscow  (1969)  (In Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Modenov,  "Analytic geometry" , Moscow  (1969)  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''II''' , Springer  (1987)  pp. 227</TD></TR>
 +
</table>
  
 
+
{{OldImage}}
 
 
====Comments====
 
 
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''II''' , Springer  (1987)  pp. 227</TD></TR></table>
 

Latest revision as of 11:21, 26 March 2023

Spheres forming part of the geometrical constructions relating the planimetric definition of the ellipse, hyperbola or parabola with their stereometric definitions. For instance, let two spheres (also known as Dandelin spheres), inscribed in a circular cone, make contact with the surface of the cone along circles $c$ and $c'$ (see Fig.) and let $\pi$ be a certain plane passing through two points $F$ and $F'$.

Figure: d030100a

If an arbitrary point $M$ is taken on the intersection line of the cone with $\pi$, and a generatrix $SM$ is drawn intersecting $c$ and $c'$, then if $M$ varies, the points $T$ and $T'$ move around the circles $c$ and $c'$ while preserving the distance $TT'$, i.e. the intersection line will be an ellipse ($MF'+MF=TT'$, $MF'=MT'$ and $MF=MT$). In the case of a hyperbola, Dandelin spheres are located in different sheets.

Suggested by G. Dandelin in 1822.

References

[1] P.S. Modenov, "Analytic geometry" , Moscow (1969) (In Russian)
[a1] M. Berger, "Geometry" , II , Springer (1987) pp. 227


🛠️ This page contains images that should be replaced by better images in the SVG file format. 🛠️
How to Cite This Entry:
Dandelin spheres. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dandelin_spheres&oldid=17843
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article