|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | A holomorphic action of a complex [[Lie group|Lie group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204001.png" /> on a holomorphic [[Vector bundle|vector bundle]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204002.png" /> is a left holomorphic action, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204003.png" />, which projects onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204004.png" /> and which sends <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204005.png" />-linearly each vector space fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204006.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204007.png" />. In this situation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204008.png" /> is conveniently said to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040010.png" />-equivariant. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040012.png" /> are equivariant bundles over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040014.png" /> is a mapping of bundles, it is easy to see what is meant by "f is G-equivariant" and also what is meant by "E1 and E2 are equivalent" , as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040015.png" />-equivariant vector bundles.
| + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, |
| + | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist |
| + | was used. |
| + | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. |
| | | |
− | When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040017.png" />, etc. are as above, one sees that, by restriction, the given action defines a complex linear representation of the stabilizer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040018.png" /> of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040019.png" /> on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040020.png" />-vectorial fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040021.png" />. The equivalence class of this representation depends only on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040022.png" />-equivariant holomorphism class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040023.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040024.png" /> is a homogeneous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040025.png" />-space, this correspondence between equivalence classes is bijective. This may be explained as follows: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040026.png" /> is a complex homogeneous space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040027.png" /> is a holomorphic complex linear representation, one considers the following equivalence relation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040028.png" />:
| + | Out of 137 formulas, 137 were replaced by TEX code.--> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040029.png" /></td> </tr></table>
| + | {{TEX|semi-auto}}{{TEX|done}} |
| + | A holomorphic action of a complex [[Lie group|Lie group]] $G$ on a holomorphic [[Vector bundle|vector bundle]] $\pi : E \rightarrow M$ is a left holomorphic action, $G \times E \rightarrow E$, which projects onto $M$ and which sends $\mathbf{C}$-linearly each vector space fibre $E _ { m } = \pi ^ { - 1 } ( m )$ onto $g E _ { m } = \pi ^ { - 1 } ( g m )$. In this situation $E$ is conveniently said to be $G$-equivariant. If $E _ { 1 }$ and $E _ { 2 }$ are equivariant bundles over $M$ and $f : E _ { 1 } \rightarrow E _ { 2 }$ is a mapping of bundles, it is easy to see what is meant by "f is G-equivariant" and also what is meant by "E1 and E2 are equivalent" , as $G$-equivariant vector bundles. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040032.png" />. The quotient space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040033.png" /> will be denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040034.png" />, and the equivalence class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040035.png" /> will be denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040036.png" />. The formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040037.png" /> makes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040038.png" /> into a vector bundle of fibre type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040039.png" /> via <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040040.png" />. This fibration is naturally holomorphically <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040041.png" />-equivariant via the action <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040042.png" /> and one checks that the stabilizer, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040043.png" />, of the "neutral element" of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040044.png" /> acts (see above) on the "neutral fibre" exactly by the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040045.png" />.
| + | When $G$, $\pi : E \rightarrow M$, etc. are as above, one sees that, by restriction, the given action defines a complex linear representation of the stabilizer $ \operatorname { stab}_{G} (m)$ of a point $m \in M$ on the $\mathbf{C}$-vectorial fibre $E _ { m }$. The equivalence class of this representation depends only on the $G$-equivariant holomorphism class of $E$. If $M$ is a homogeneous $G$-space, this correspondence between equivalence classes is bijective. This may be explained as follows: If $M = G / H$ is a complex homogeneous space and $\varrho : H \rightarrow F$ is a holomorphic complex linear representation, one considers the following equivalence relation on $G \times F$: |
| | | |
− | Below, the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040046.png" /> will be regarded in some detail. Thus, the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040047.png" /> may be interpreted as a multiplicative character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040049.png" /> will be a complex line bundle.
| + | \begin{equation*} ( g , \mathbf{f} ) \sim ( g h ^ { - 1 } , \varrho ( h ) \mathbf{f} ), \end{equation*} |
| + | |
| + | where $g \in G$, $h \in H$, $\mathbf{f} \in F$. The quotient space $G \times F / \sim$ will be denoted by $G \times^{\varrho} F$, and the equivalence class of $( g , \mathbf{f} )$ will be denoted by $g \times ^ { \varrho } {\bf f} \in G \times ^ { \varrho } F$. The formula $\pi ( g \times ^ { \varrho } \mathbf f ) = g H$ makes $G \times^{\varrho} F$ into a vector bundle of fibre type $F$ via $\pi : G \times^\varrho F \rightarrow G / H$. This fibration is naturally holomorphically $G$-equivariant via the action $g ( g ^ { \prime } \times ^ { \varrho } \mathbf{f} ) = g g ^ { \prime } \times ^ { \varrho } \mathbf{f}$ and one checks that the stabilizer, $H$, of the "neutral element" of $G / H$ acts (see above) on the "neutral fibre" exactly by the representation $\varrho $. |
| + | |
| + | Below, the case $F = \mathbf C$ will be regarded in some detail. Thus, the representation $\varrho $ may be interpreted as a multiplicative character $\varrho : H \rightarrow \mathbf{C} ^ { * }$ and $\xi = G \times ^ { \varrho } \bf C$ will be a complex line bundle. |
| | | |
| ==Background.== | | ==Background.== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040050.png" /> be a semi-simple complex Lie group with Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040051.png" /> (cf. also [[Lie group, semi-simple|Lie group, semi-simple]]; [[Lie algebra|Lie algebra]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040052.png" /> a [[Cartan subalgebra|Cartan subalgebra]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040053.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040054.png" /> a system of positive roots (cf. [[Root system|Root system]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040055.png" /> the corresponding system of opposite roots (termed negative), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040056.png" /> the set of all roots. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040057.png" /> be the root space associated to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040058.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040059.png" /> is a nilpotent Lie subalgebra and one defines the maximal solvable subalgebra (the Borel subalgebra) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040060.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040061.png" />. This is the Lie algebra of a closed complex Lie subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040062.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040063.png" /> is compact. Finally, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040064.png" />. | + | Let $G$ be a semi-simple complex Lie group with Lie algebra $\frak g$ (cf. also [[Lie group, semi-simple|Lie group, semi-simple]]; [[Lie algebra|Lie algebra]]), $\mathfrak { h } \subset \mathfrak { g }$ a [[Cartan subalgebra|Cartan subalgebra]] of $\frak g$, $S ^ { + }$ a system of positive roots (cf. [[Root system|Root system]]), $S^{-}$ the corresponding system of opposite roots (termed negative), and $S = S ^ { + } \cup S ^ { - } \subset \mathfrak{h} ^ { * }$ the set of all roots. Let $\mathfrak { g } _ { \alpha }$ be the root space associated to $\alpha \in S ^ { + }$. Then $\mathfrak{n} ^ { + } = \oplus _ { \alpha \in S ^{ + }} \mathfrak { g } _ { \alpha }$ is a nilpotent Lie subalgebra and one defines the maximal solvable subalgebra (the Borel subalgebra) $\mathfrak{b}$ by $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$. This is the Lie algebra of a closed complex Lie subgroup $B \subset G$ such that $G / B$ is compact. Finally, $\mathfrak { n } ^ { + } = [ \mathfrak { b } , \mathfrak { b } ]$. |
| | | |
− | Note that there is a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040065.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040066.png" /> that is, in the vector spaces sense, a real form (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040068.png" /> is the Lie subalgebra of a compact connected group). It follows that the restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040069.png" /> of the [[Killing form|Killing form]] of the complex algebra, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040070.png" />, is a real scalar product. From this one deduces an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040071.png" /> and thus a scalar product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040072.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040073.png" />. Notice that the evaluation of the weights of representations (and also of the roots) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040074.png" /> are real numbers. Recall that the closed Weyl chamber <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040075.png" /> is the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040076.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040077.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040078.png" />. The Weyl group acts on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040079.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040080.png" /> as "fundamental domain" . It is worth noting that while the transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040081.png" /> is not necessarily in the [[Weyl group|Weyl group]], the opposite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040082.png" /> is the transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040083.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040084.png" /> by an element of the Weyl group (in fact, by the longest element). Now consider an irreducible representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040085.png" />. The theory of H. Weyl classically characterizes such a representation by its dominant weight (cf. also [[Representation of a Lie algebra|Representation of a Lie algebra]]). Contrary to tradition, it is perhaps wiser to characterize a representation by its dominated weight. This is the unique weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040086.png" /> of the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040087.png" /> such that the other weights of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040088.png" /> may be obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040089.png" /> by the addition of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040090.png" />-linear combination of positive roots. In general, the dominated weight of a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040091.png" /> is not the opposite of the dominant weight of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040092.png" />, but the opposite of the dominant weight of the contragredient representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040093.png" />. This dominated weight is always in the opposite of the Weyl chamber. | + | Note that there is a subspace $\mathfrak{h}_R$ of $\mathfrak h $ that is, in the vector spaces sense, a real form (that is, $\mathfrak { h } = \mathfrak { h } _ { R } \oplus i \mathfrak { h } _ { R }$ and $i \mathfrak{h} _ { R }$ is the Lie subalgebra of a compact connected group). It follows that the restriction to $\mathfrak{h}_R$ of the [[Killing form|Killing form]] of the complex algebra, denoted by $\langle \, .\, ,\, . \, \rangle$, is a real scalar product. From this one deduces an isomorphism $\mathfrak { h } _ { R } \rightarrow \mathfrak { h } _ { R } ^ { * } : = \operatorname { hom } _ { \mathbf{R} } ( \mathfrak { h } _ { R } , \mathbf{R} )$ and thus a scalar product $\langle \, .\, ,\, . \, \rangle$ on $\mathfrak{h} _ { R } ^ { * }$. Notice that the evaluation of the weights of representations (and also of the roots) on $\mathfrak{h}_R$ are real numbers. Recall that the closed Weyl chamber $C ^ { + } \subset \mathfrak { h } _ { R } ^ { * }$ is the set of $h ^ { * }$ for which $\langle \alpha , h ^ { * } \rangle \geq 0$ for all $\alpha \in S ^ { + }$. The Weyl group acts on $\mathfrak{h} _ { R } ^ { * }$, with $C ^ { + }$ as "fundamental domain" . It is worth noting that while the transformation $h ^ { * } \mapsto - h ^ { * }$ is not necessarily in the [[Weyl group|Weyl group]], the opposite $C ^ { - } = - C ^ { + }$ is the transformation $w C ^ { + }$ of $C ^ { + }$ by an element of the Weyl group (in fact, by the longest element). Now consider an irreducible representation $R : G \rightarrow V$. The theory of H. Weyl classically characterizes such a representation by its dominant weight (cf. also [[Representation of a Lie algebra|Representation of a Lie algebra]]). Contrary to tradition, it is perhaps wiser to characterize a representation by its dominated weight. This is the unique weight $p \in \mathfrak { h } ^ { * }$ of the representation $R$ such that the other weights of $R$ may be obtained from $p$ by the addition of an $\mathbf{N}$-linear combination of positive roots. In general, the dominated weight of a representation $R$ is not the opposite of the dominant weight of $R$, but the opposite of the dominant weight of the contragredient representation $\check{R} : G \rightarrow V ^ { * }$. This dominated weight is always in the opposite of the Weyl chamber. |
| | | |
| ==Bott–Borel–Weil theorem.== | | ==Bott–Borel–Weil theorem.== |
− | In the above context, consider the hyperplane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040094.png" /> that is the sum of all the proper spaces associated to the weights different from the dominated weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040095.png" /> of the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040096.png" />. By the definition of dominated weight, one sees that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040097.png" />. Now consider the holomorphically trivial bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040098.png" />, and make it equivariant by the action <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040099.png" />. This <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400100.png" />-equivariant bundle is exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400101.png" />, which leads to the equivariant exact sequence of holomorphic bundles: | + | In the above context, consider the hyperplane $H _ { R } \subset V$ that is the sum of all the proper spaces associated to the weights different from the dominated weight $p$ of the representation $R$. By the definition of dominated weight, one sees that $R _{*} ( \mathfrak{b} ) H _ { R } \subset H _ { R }$. Now consider the holomorphically trivial bundle $G / B \times V$, and make it equivariant by the action $g ^ { \prime } ( g B , v ) = ( g ^ { \prime } g B , R ( g ^ { \prime } ) v )$. This $G$-equivariant bundle is exactly $G \times ^ { R } V$, which leads to the equivariant exact sequence of holomorphic bundles: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400102.png" /></td> </tr></table>
| + | \begin{equation*} 0 \rightarrow G \times ^ { R } H _ { R } \rightarrow G \times ^ { R } V \rightarrow \xi \rightarrow 0. \end{equation*} |
| | | |
− | In fact, the weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400103.png" /> extends to a character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400104.png" />, which can be integrated to give a character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400105.png" />. One easily sees that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400106.png" /> and that the natural action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400107.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400108.png" /> is exactly the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400109.png" />. | + | In fact, the weight $p \in C^{-}$ extends to a character $p : \mathfrak { b } \rightarrow \mathbf{C}$, which can be integrated to give a character $\varrho = e ^ { p } : B \rightarrow \mathbf C ^ { * }$. One easily sees that $\xi = G \times ^ { \varrho } \bf C$ and that the natural action of $G$ on $H ^ { 0 } ( G / B , G \times ^ { R } V )$ is exactly the representation $R$. |
| | | |
| In this context, the Borel–Weil theorem states: | | In this context, the Borel–Weil theorem states: |
| | | |
− | a) The arrow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400110.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400111.png" />-equivariant isomorphism; | + | a) The arrow $V \rightarrow H ^ { 0 } ( G / B , \xi )$ is a $G$-equivariant isomorphism; |
| | | |
− | b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400112.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400113.png" />. These results are not unexpected (in case b), at least for those who are familiar with the idea of a sufficiently ample line bundle). This is not at all the case for the generalization to representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400114.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400115.png" /> when the line bundle is given by a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400116.png" /> such that the restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400117.png" /> of its derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400118.png" /> is not the dominated weight of a holomorphic representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400119.png" />. Indeed, this generalization is the very unexpected Bott–Borel–Weil theorem: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400120.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400121.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400122.png" /> be as above, and let also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400123.png" /> be the Weyl group relative to the Cartan algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400124.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400125.png" />. Then: | + | b) $H ^ { k } ( G / B , \xi ) = 0$ for $k \neq 0$. These results are not unexpected (in case b), at least for those who are familiar with the idea of a sufficiently ample line bundle). This is not at all the case for the generalization to representations of $G$ in $H ^ { i } ( G / B , \xi )$ when the line bundle is given by a representation $\varrho : B \rightarrow \mathbf{C} ^ { * }$ such that the restriction to $\mathfrak h $ of its derivative $p : \mathfrak { b } \rightarrow \mathbf{C}$ is not the dominated weight of a holomorphic representation of $G$. Indeed, this generalization is the very unexpected Bott–Borel–Weil theorem: Let $p \in \mathfrak{h} _ { R } ^ { * } \subset \mathfrak{h} ^ { * }$, $\varrho : B \rightarrow \mathbf{C} ^ { * }$ and $\xi = G \times ^ { \varrho } \bf C$ be as above, and let also $\bf W$ be the Weyl group relative to the Cartan algebra $\mathfrak h $ and $\delta : = ( 1 / 2 ) \sum _ { \alpha \in S ^ { + } } \alpha \in {\frak h} _ {\bf R } ^ { * }$. Then: |
| | | |
− | i) If, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400126.png" />, the quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400127.png" /> is never the dominated weight of a representation, then all the cohomology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400128.png" /> are zero. | + | i) If, for all $w \in \operatorname{W}$, the quantity $w ( p - \delta ) + \delta$ is never the dominated weight of a representation, then all the cohomology groups $H ^ { i } ( G / B , \xi )$ are zero. |
| | | |
− | ii) If there exists an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400129.png" />, hence unique with this property, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400130.png" /> is the dominated weight of a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400131.png" />, then: | + | ii) If there exists an element $w \in \operatorname{W}$, hence unique with this property, such that $w ( p - \delta ) + \delta \in C^-$ is the dominated weight of a representation $R$, then: |
| | | |
− | A) For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400132.png" /> (the length of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400133.png" />), the cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400134.png" /> is zero. | + | A) For $i \neq \text{l} ( w )$ (the length of $w$), the cohomology group $H ^ { i } ( G / B , \xi )$ is zero. |
| | | |
− | B) For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400135.png" />, the natural representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400136.png" /> on the cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400137.png" /> is exactly the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400138.png" />. | + | B) For $i = \operatorname{l} ( w )$, the natural representation of $G$ on the cohomology group $H ^ { i } ( G / B , \xi )$ is exactly the representation $R$. |
| | | |
| The proof is essentially a very beautiful application of the relative cohomology of Lie algebras, initiated by C. Chevalley and S. Eilenberg. | | The proof is essentially a very beautiful application of the relative cohomology of Lie algebras, initiated by C. Chevalley and S. Eilenberg. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Bott, "Homogeneous vector bundles" ''Ann. of Math.'' , '''66''' (1957) pp. 203–248</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N.R. Wallach, "Harmonic analysis on homogeneous spaces" , M. Dekker (1973)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Demazure, "A very simple proof of Bott's theorem" ''Invent. Math.'' , '''33''' (1976)</TD></TR></table> | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> R. Bott, "Homogeneous vector bundles" ''Ann. of Math.'' , '''66''' (1957) pp. 203–248</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> N.R. Wallach, "Harmonic analysis on homogeneous spaces" , M. Dekker (1973)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> M. Demazure, "A very simple proof of Bott's theorem" ''Invent. Math.'' , '''33''' (1976)</td></tr></table> |
A holomorphic action of a complex Lie group $G$ on a holomorphic vector bundle $\pi : E \rightarrow M$ is a left holomorphic action, $G \times E \rightarrow E$, which projects onto $M$ and which sends $\mathbf{C}$-linearly each vector space fibre $E _ { m } = \pi ^ { - 1 } ( m )$ onto $g E _ { m } = \pi ^ { - 1 } ( g m )$. In this situation $E$ is conveniently said to be $G$-equivariant. If $E _ { 1 }$ and $E _ { 2 }$ are equivariant bundles over $M$ and $f : E _ { 1 } \rightarrow E _ { 2 }$ is a mapping of bundles, it is easy to see what is meant by "f is G-equivariant" and also what is meant by "E1 and E2 are equivalent" , as $G$-equivariant vector bundles.
When $G$, $\pi : E \rightarrow M$, etc. are as above, one sees that, by restriction, the given action defines a complex linear representation of the stabilizer $ \operatorname { stab}_{G} (m)$ of a point $m \in M$ on the $\mathbf{C}$-vectorial fibre $E _ { m }$. The equivalence class of this representation depends only on the $G$-equivariant holomorphism class of $E$. If $M$ is a homogeneous $G$-space, this correspondence between equivalence classes is bijective. This may be explained as follows: If $M = G / H$ is a complex homogeneous space and $\varrho : H \rightarrow F$ is a holomorphic complex linear representation, one considers the following equivalence relation on $G \times F$:
\begin{equation*} ( g , \mathbf{f} ) \sim ( g h ^ { - 1 } , \varrho ( h ) \mathbf{f} ), \end{equation*}
where $g \in G$, $h \in H$, $\mathbf{f} \in F$. The quotient space $G \times F / \sim$ will be denoted by $G \times^{\varrho} F$, and the equivalence class of $( g , \mathbf{f} )$ will be denoted by $g \times ^ { \varrho } {\bf f} \in G \times ^ { \varrho } F$. The formula $\pi ( g \times ^ { \varrho } \mathbf f ) = g H$ makes $G \times^{\varrho} F$ into a vector bundle of fibre type $F$ via $\pi : G \times^\varrho F \rightarrow G / H$. This fibration is naturally holomorphically $G$-equivariant via the action $g ( g ^ { \prime } \times ^ { \varrho } \mathbf{f} ) = g g ^ { \prime } \times ^ { \varrho } \mathbf{f}$ and one checks that the stabilizer, $H$, of the "neutral element" of $G / H$ acts (see above) on the "neutral fibre" exactly by the representation $\varrho $.
Below, the case $F = \mathbf C$ will be regarded in some detail. Thus, the representation $\varrho $ may be interpreted as a multiplicative character $\varrho : H \rightarrow \mathbf{C} ^ { * }$ and $\xi = G \times ^ { \varrho } \bf C$ will be a complex line bundle.
Background.
Let $G$ be a semi-simple complex Lie group with Lie algebra $\frak g$ (cf. also Lie group, semi-simple; Lie algebra), $\mathfrak { h } \subset \mathfrak { g }$ a Cartan subalgebra of $\frak g$, $S ^ { + }$ a system of positive roots (cf. Root system), $S^{-}$ the corresponding system of opposite roots (termed negative), and $S = S ^ { + } \cup S ^ { - } \subset \mathfrak{h} ^ { * }$ the set of all roots. Let $\mathfrak { g } _ { \alpha }$ be the root space associated to $\alpha \in S ^ { + }$. Then $\mathfrak{n} ^ { + } = \oplus _ { \alpha \in S ^{ + }} \mathfrak { g } _ { \alpha }$ is a nilpotent Lie subalgebra and one defines the maximal solvable subalgebra (the Borel subalgebra) $\mathfrak{b}$ by $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$. This is the Lie algebra of a closed complex Lie subgroup $B \subset G$ such that $G / B$ is compact. Finally, $\mathfrak { n } ^ { + } = [ \mathfrak { b } , \mathfrak { b } ]$.
Note that there is a subspace $\mathfrak{h}_R$ of $\mathfrak h $ that is, in the vector spaces sense, a real form (that is, $\mathfrak { h } = \mathfrak { h } _ { R } \oplus i \mathfrak { h } _ { R }$ and $i \mathfrak{h} _ { R }$ is the Lie subalgebra of a compact connected group). It follows that the restriction to $\mathfrak{h}_R$ of the Killing form of the complex algebra, denoted by $\langle \, .\, ,\, . \, \rangle$, is a real scalar product. From this one deduces an isomorphism $\mathfrak { h } _ { R } \rightarrow \mathfrak { h } _ { R } ^ { * } : = \operatorname { hom } _ { \mathbf{R} } ( \mathfrak { h } _ { R } , \mathbf{R} )$ and thus a scalar product $\langle \, .\, ,\, . \, \rangle$ on $\mathfrak{h} _ { R } ^ { * }$. Notice that the evaluation of the weights of representations (and also of the roots) on $\mathfrak{h}_R$ are real numbers. Recall that the closed Weyl chamber $C ^ { + } \subset \mathfrak { h } _ { R } ^ { * }$ is the set of $h ^ { * }$ for which $\langle \alpha , h ^ { * } \rangle \geq 0$ for all $\alpha \in S ^ { + }$. The Weyl group acts on $\mathfrak{h} _ { R } ^ { * }$, with $C ^ { + }$ as "fundamental domain" . It is worth noting that while the transformation $h ^ { * } \mapsto - h ^ { * }$ is not necessarily in the Weyl group, the opposite $C ^ { - } = - C ^ { + }$ is the transformation $w C ^ { + }$ of $C ^ { + }$ by an element of the Weyl group (in fact, by the longest element). Now consider an irreducible representation $R : G \rightarrow V$. The theory of H. Weyl classically characterizes such a representation by its dominant weight (cf. also Representation of a Lie algebra). Contrary to tradition, it is perhaps wiser to characterize a representation by its dominated weight. This is the unique weight $p \in \mathfrak { h } ^ { * }$ of the representation $R$ such that the other weights of $R$ may be obtained from $p$ by the addition of an $\mathbf{N}$-linear combination of positive roots. In general, the dominated weight of a representation $R$ is not the opposite of the dominant weight of $R$, but the opposite of the dominant weight of the contragredient representation $\check{R} : G \rightarrow V ^ { * }$. This dominated weight is always in the opposite of the Weyl chamber.
Bott–Borel–Weil theorem.
In the above context, consider the hyperplane $H _ { R } \subset V$ that is the sum of all the proper spaces associated to the weights different from the dominated weight $p$ of the representation $R$. By the definition of dominated weight, one sees that $R _{*} ( \mathfrak{b} ) H _ { R } \subset H _ { R }$. Now consider the holomorphically trivial bundle $G / B \times V$, and make it equivariant by the action $g ^ { \prime } ( g B , v ) = ( g ^ { \prime } g B , R ( g ^ { \prime } ) v )$. This $G$-equivariant bundle is exactly $G \times ^ { R } V$, which leads to the equivariant exact sequence of holomorphic bundles:
\begin{equation*} 0 \rightarrow G \times ^ { R } H _ { R } \rightarrow G \times ^ { R } V \rightarrow \xi \rightarrow 0. \end{equation*}
In fact, the weight $p \in C^{-}$ extends to a character $p : \mathfrak { b } \rightarrow \mathbf{C}$, which can be integrated to give a character $\varrho = e ^ { p } : B \rightarrow \mathbf C ^ { * }$. One easily sees that $\xi = G \times ^ { \varrho } \bf C$ and that the natural action of $G$ on $H ^ { 0 } ( G / B , G \times ^ { R } V )$ is exactly the representation $R$.
In this context, the Borel–Weil theorem states:
a) The arrow $V \rightarrow H ^ { 0 } ( G / B , \xi )$ is a $G$-equivariant isomorphism;
b) $H ^ { k } ( G / B , \xi ) = 0$ for $k \neq 0$. These results are not unexpected (in case b), at least for those who are familiar with the idea of a sufficiently ample line bundle). This is not at all the case for the generalization to representations of $G$ in $H ^ { i } ( G / B , \xi )$ when the line bundle is given by a representation $\varrho : B \rightarrow \mathbf{C} ^ { * }$ such that the restriction to $\mathfrak h $ of its derivative $p : \mathfrak { b } \rightarrow \mathbf{C}$ is not the dominated weight of a holomorphic representation of $G$. Indeed, this generalization is the very unexpected Bott–Borel–Weil theorem: Let $p \in \mathfrak{h} _ { R } ^ { * } \subset \mathfrak{h} ^ { * }$, $\varrho : B \rightarrow \mathbf{C} ^ { * }$ and $\xi = G \times ^ { \varrho } \bf C$ be as above, and let also $\bf W$ be the Weyl group relative to the Cartan algebra $\mathfrak h $ and $\delta : = ( 1 / 2 ) \sum _ { \alpha \in S ^ { + } } \alpha \in {\frak h} _ {\bf R } ^ { * }$. Then:
i) If, for all $w \in \operatorname{W}$, the quantity $w ( p - \delta ) + \delta$ is never the dominated weight of a representation, then all the cohomology groups $H ^ { i } ( G / B , \xi )$ are zero.
ii) If there exists an element $w \in \operatorname{W}$, hence unique with this property, such that $w ( p - \delta ) + \delta \in C^-$ is the dominated weight of a representation $R$, then:
A) For $i \neq \text{l} ( w )$ (the length of $w$), the cohomology group $H ^ { i } ( G / B , \xi )$ is zero.
B) For $i = \operatorname{l} ( w )$, the natural representation of $G$ on the cohomology group $H ^ { i } ( G / B , \xi )$ is exactly the representation $R$.
The proof is essentially a very beautiful application of the relative cohomology of Lie algebras, initiated by C. Chevalley and S. Eilenberg.
References
[a1] | R. Bott, "Homogeneous vector bundles" Ann. of Math. , 66 (1957) pp. 203–248 |
[a2] | N.R. Wallach, "Harmonic analysis on homogeneous spaces" , M. Dekker (1973) |
[a3] | M. Demazure, "A very simple proof of Bott's theorem" Invent. Math. , 33 (1976) |