|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | ''of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s0844701.png" />''
| |
| | | |
− | An extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s0844702.png" /> such that for some natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s0844703.png" /> the fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s0844704.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s0844705.png" /> are linearly disjoint over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s0844706.png" /> (see [[Linearly-disjoint extensions|Linearly-disjoint extensions]]). An extension that is not separable is called inseparable. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s0844707.png" /> is the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s0844708.png" />. In characteristic 0 all extensions are separable.
| + | {{MSC|12Fxx}} |
| + | {{TEX|done}} |
| | | |
− | In what follows only algebraic extensions will be considered (for transcendental separable extensions see [[Transcendental extension|Transcendental extension]]). A finite extension is separable if and only if the [[Trace|trace]] mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s0844709.png" /> is a non-zero function. An algebraic extension is separable if any finite subextension is separable.
| + | A separable [[extension of a field]] $k$ |
| + | is an extension $K/k$ such that for some natural number $n$ the fields $K$ |
| + | and $k^{p^{-n}}$ are linearly disjoint over $k$ (see |
| + | [[Linearly-disjoint extensions|Linearly-disjoint extensions]]). An |
| + | extension that is not separable is called inseparable. Here $p$ is the |
| + | characteristic of $k$. In characteristic 0 all extensions are |
| + | separable. |
| | | |
− | The separable extensions form a distinguished class of extensions, that is, in a [[Tower of fields|tower of fields]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447010.png" /> the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447011.png" /> is separable if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447013.png" /> are separable; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447015.png" /> are separable extensions, then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447016.png" />; for a separable extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447017.png" /> and an arbitrary extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447018.png" /> the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447019.png" /> is again separable. An extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447020.png" /> is separable if and only if it admits an imbedding in a [[Galois extension|Galois extension]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447021.png" />. In this case, the number of different <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447022.png" />-isomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447023.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447024.png" /> is the same as the degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447025.png" /> for a finite extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447026.png" />. Any finite separable extension is simple.
| + | In what follows only algebraic extensions will be considered (for |
| + | transcendental separable extensions see |
| + | [[Transcendental extension|Transcendental extension]]). A finite |
| + | extension is separable if and only if the |
| + | [[Trace|trace]] mapping ${\mathrm Tr} : K\to k$ is a non-zero function. An algebraic |
| + | extension is separable if any finite subextension is separable. |
| | | |
− | A polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447027.png" /> is called separable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447028.png" /> if none of its irreducible factors has a multiple root in an algebraic closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447029.png" />. An algebraic element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447030.png" /> is called separable (over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447031.png" />) if it is a root of a polynomial that is separable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447032.png" />. Otherwise <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447033.png" /> is called inseparable. An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447034.png" /> is called purely inseparable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447035.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447036.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447037.png" />. An irreducible polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447038.png" /> is inseparable if and only if its derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447039.png" /> is identically zero (this is possible only for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447040.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447042.png" />). An arbitrary irreducible polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447043.png" /> can be uniquely represented in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447044.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447045.png" /> is a separable polynomial. The degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447046.png" /> and the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447047.png" /> are called, respectively, the reduced degree and the index of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447048.png" />.
| + | The separable extensions form a [[distinguished class of extensions]], |
| + | that is, in a |
| + | [[Tower of fields|tower of fields]] $L\supset K\supset k$ the extension $L/k$ is separable |
| + | if and only if $L/K$ and $K/k$ are separable; if $K_1/k$ and $K_2/k$ are separable |
| + | extensions, then so is $K_1K_2/k$; for a separable extension $K/k$ and an |
| + | arbitrary extension $L/k$ the extension $KL/L$ is again separable. An |
| + | extension $K/k$ is separable if and only if it admits an imbedding in a |
| + | [[Galois extension|Galois extension]] $L/k$. In this case, the number of |
| + | different $k$-isomorphisms of $K$ into $L$ is the same as the degree |
| + | $[K:k]$ for a finite extension $K/k$. Any finite separable extension is |
| + | simple. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447049.png" /> be an arbitrary algebraic extension. The elements of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447050.png" /> that are separable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447051.png" /> form a field, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447052.png" />, which is the maximal separable extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447053.png" /> contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447054.png" />. The field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447055.png" /> is called the separable closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447056.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447057.png" />. The degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447058.png" /> is called the separable degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447059.png" />, and the degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447060.png" /> the inseparable degree, or the degree of inseparability. The inseparable degree is equal to some power of the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447061.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447062.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447063.png" /> is said to be separably closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447064.png" />. In this case the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447065.png" /> is called purely inseparable. An extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447066.png" /> is purely inseparable if and only if
| + | A polynomial $f\in k[x]$ is called separable over $k$ if none of its |
| + | irreducible factors has a multiple root in an algebraic closure of |
| + | $k$. An algebraic element $\def\a{\alpha}$ is called separable (over $k$) if it is |
| + | a root of a polynomial that is separable over $k$. Otherwise $\a$ is |
| + | called inseparable. An element $\a$ is called purely inseparable over |
| + | $k$ if $\a^{p^n}\in k$ for some $n$. An irreducible polynomial $f(x)$ is inseparable |
| + | if and only if its derivative $f'(x)$ is identically zero (this is |
| + | possible only for $k$ of characteristic $p>0$ and $f(x)=f_1(x^p)$). An arbitrary |
| + | irreducible polynomial $f(x)$ can be uniquely represented in the form |
| + | $f(x)=g(x^{p^e})$, where $g(x)$ is a separable polynomial. The degree of $g(x)$ and the |
| + | number $e$ are called, respectively, the reduced degree and the index |
| + | of $f(x)$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447067.png" /></td> </tr></table>
| + | Let $L/k$ be an arbitrary algebraic extension. The elements of the field |
− | | + | $L$ that are separable over $k$ form a field, $K$, which is the |
− | that is, if any element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447068.png" /> is purely inseparable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447069.png" />. The purely inseparable extensions of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447070.png" /> form a distinguished class of extensions. If an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447071.png" /> is both separable and purely inseparable, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084470/s08447072.png" />. For references see [[Extension of a field|Extension of a field]]. | + | maximal separable extension of $k$ contained in $L$. The field $K$ is |
| + | called the separable closure of $k$ in $L$. The degree $[K:k]$ is called |
| + | the separable degree of $L/k$, and the degree $[L:K]$ the inseparable |
| + | degree, or the degree of inseparability. The inseparable degree is |
| + | equal to some power of the number $p=\mathrm{char\;} k$. If $K=k$, then $k$ is said to be |
| + | separably closed in $L$. In this case the extension $L/k$ is called |
| + | purely inseparable. An extension $K/k$ is purely inseparable if and only |
| + | if |
| + | $$K\subset k^{p^\infty} = \bigcup_n\; k^{p^{-n}},$$ |
| + | that is, if any element of $K$ is purely inseparable over |
| + | $k$. The purely inseparable extensions of a field $k$ form a |
| + | distinguished class of extensions. If an extension $K/k$ is both |
| + | separable and purely inseparable, then $K=k$. For references see |
| + | [[Extension of a field|Extension of a field]]. |
2020 Mathematics Subject Classification: Primary: 12Fxx [MSN][ZBL]
A separable extension of a field $k$
is an extension $K/k$ such that for some natural number $n$ the fields $K$
and $k^{p^{-n}}$ are linearly disjoint over $k$ (see
Linearly-disjoint extensions). An
extension that is not separable is called inseparable. Here $p$ is the
characteristic of $k$. In characteristic 0 all extensions are
separable.
In what follows only algebraic extensions will be considered (for
transcendental separable extensions see
Transcendental extension). A finite
extension is separable if and only if the
trace mapping ${\mathrm Tr} : K\to k$ is a non-zero function. An algebraic
extension is separable if any finite subextension is separable.
The separable extensions form a distinguished class of extensions,
that is, in a
tower of fields $L\supset K\supset k$ the extension $L/k$ is separable
if and only if $L/K$ and $K/k$ are separable; if $K_1/k$ and $K_2/k$ are separable
extensions, then so is $K_1K_2/k$; for a separable extension $K/k$ and an
arbitrary extension $L/k$ the extension $KL/L$ is again separable. An
extension $K/k$ is separable if and only if it admits an imbedding in a
Galois extension $L/k$. In this case, the number of
different $k$-isomorphisms of $K$ into $L$ is the same as the degree
$[K:k]$ for a finite extension $K/k$. Any finite separable extension is
simple.
A polynomial $f\in k[x]$ is called separable over $k$ if none of its
irreducible factors has a multiple root in an algebraic closure of
$k$. An algebraic element $\def\a{\alpha}$ is called separable (over $k$) if it is
a root of a polynomial that is separable over $k$. Otherwise $\a$ is
called inseparable. An element $\a$ is called purely inseparable over
$k$ if $\a^{p^n}\in k$ for some $n$. An irreducible polynomial $f(x)$ is inseparable
if and only if its derivative $f'(x)$ is identically zero (this is
possible only for $k$ of characteristic $p>0$ and $f(x)=f_1(x^p)$). An arbitrary
irreducible polynomial $f(x)$ can be uniquely represented in the form
$f(x)=g(x^{p^e})$, where $g(x)$ is a separable polynomial. The degree of $g(x)$ and the
number $e$ are called, respectively, the reduced degree and the index
of $f(x)$.
Let $L/k$ be an arbitrary algebraic extension. The elements of the field
$L$ that are separable over $k$ form a field, $K$, which is the
maximal separable extension of $k$ contained in $L$. The field $K$ is
called the separable closure of $k$ in $L$. The degree $[K:k]$ is called
the separable degree of $L/k$, and the degree $[L:K]$ the inseparable
degree, or the degree of inseparability. The inseparable degree is
equal to some power of the number $p=\mathrm{char\;} k$. If $K=k$, then $k$ is said to be
separably closed in $L$. In this case the extension $L/k$ is called
purely inseparable. An extension $K/k$ is purely inseparable if and only
if
$$K\subset k^{p^\infty} = \bigcup_n\; k^{p^{-n}},$$
that is, if any element of $K$ is purely inseparable over
$k$. The purely inseparable extensions of a field $k$ form a
distinguished class of extensions. If an extension $K/k$ is both
separable and purely inseparable, then $K=k$. For references see
Extension of a field.