|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | A generalization of the concept of a [[Group|group]] to the case of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n0660002.png" />-ary operation. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n0660004.png" />-group is a [[Universal algebra|universal algebra]] with one <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n0660005.png" />-ary associative operation that is uniquely invertible at each place (cf. [[Algebraic operation|Algebraic operation]]). The theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n0660006.png" />-groups for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n0660007.png" /> substantially differs from the theory of groups (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n0660008.png" />-groups). Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n0660009.png" />, an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600010.png" />-group has no analogue of the unit element.
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600011.png" /> be a group with multiplication operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600012.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600013.png" /> be an arbitrary integer. Then an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600014.png" />-ary operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600015.png" /> on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600016.png" /> can be defined as follows:
| + | {{MSC|08A}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600017.png" /></td> </tr></table>
| + | A generalization of the concept of a [[group]] to the case of an $n$-ary operation. An $n$-group is a [[universal algebra]] with one $n$-ary associative operation that is uniquely invertible at each place (cf. [[Algebraic operation]]). The theory of $n$-groups for $n\geq 3$ substantially differs from the theory of groups (i.e. $2$-groups). Thus, if $n\geq 3$, an $n$-group has no analogue of the unit element. |
| | | |
− | The resulting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600018.png" />-group is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600020.png" />-group determined by the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600021.png" />. Necessary and sufficient conditions for an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600022.png" />-group to be of this form are known [[#References|[1]]]. Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600023.png" />-group is imbeddable in such an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600024.png" />-group (Post's theorem). | + | Let $\Gamma(\circ)$ be a group with multiplication operation $\circ$; let $n\geq 3$ be an arbitrary integer. Then an $n$-ary operation $\omega$ on the set $\Gamma$ can be defined as follows: |
| + | |
| + | $$a_1\dots a_n\ \omega = a_1\circ\dots\circ a_n$$ |
| + | |
| + | The resulting $n$-group is called the $n$-group determined by the group $\Gamma(\circ)$. Necessary and sufficient conditions for an $n$-group to be of this form are known [[#References|[1]]]. Any $n$-group is imbeddable in such an $n$-group (Post's theorem). |
| | | |
| ====References==== | | ====References==== |
Line 13: |
Line 17: |
| | | |
| ====Comments==== | | ====Comments==== |
− | The usual notion of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600027.png" />-group (i.e., a group of order a power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600028.png" />) is not to be mixed up with that of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600029.png" />-group in the above sense. | + | The usual notion of a $p$-group (i.e., a group of order a power of $p$) is not to be mixed up with that of an $n$-group in the above sense. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Balci, "Zur Theorie der topologischen <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600030.png" />-Gruppen" , Minerva , Munich (1981)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S.A. Rusakov, "The subgroup structure of Dedekind <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600031.png" />-ary groups" , ''Finite groups (Proc. Gomel. Sem.)'' , Minsk (1978) pp. 81–104 (In Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S.A. Rusakov, "On the theory of nilpotent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n066/n066000/n06600032.png" />-ary groups" , ''Finite groups (Proc. Gomel. Sem.)'' , Minsk (1978) pp. 104–130 (In Russian)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Balci, "Zur Theorie der topologischen $n$-Gruppen" , Minerva , Munich (1981)</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> S.A. Rusakov, "The subgroup structure of Dedekind $n$-ary groups" , ''Finite groups (Proc. Gomel. Sem.)'' , Minsk (1978) pp. 81–104 (In Russian)</TD></TR> |
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> S.A. Rusakov, "On the theory of nilpotent $n$-ary groups" , ''Finite groups (Proc. Gomel. Sem.)'' , Minsk (1978) pp. 104–130 (In Russian)</TD></TR> |
| + | </table> |
Latest revision as of 21:09, 21 November 2014
2020 Mathematics Subject Classification: Primary: 08A [MSN][ZBL]
A generalization of the concept of a group to the case of an $n$-ary operation. An $n$-group is a universal algebra with one $n$-ary associative operation that is uniquely invertible at each place (cf. Algebraic operation). The theory of $n$-groups for $n\geq 3$ substantially differs from the theory of groups (i.e. $2$-groups). Thus, if $n\geq 3$, an $n$-group has no analogue of the unit element.
Let $\Gamma(\circ)$ be a group with multiplication operation $\circ$; let $n\geq 3$ be an arbitrary integer. Then an $n$-ary operation $\omega$ on the set $\Gamma$ can be defined as follows:
$$a_1\dots a_n\ \omega = a_1\circ\dots\circ a_n$$
The resulting $n$-group is called the $n$-group determined by the group $\Gamma(\circ)$. Necessary and sufficient conditions for an $n$-group to be of this form are known [1]. Any $n$-group is imbeddable in such an $n$-group (Post's theorem).
References
[1] | A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian) |
The usual notion of a $p$-group (i.e., a group of order a power of $p$) is not to be mixed up with that of an $n$-group in the above sense.
References
[a1] | D. Balci, "Zur Theorie der topologischen $n$-Gruppen" , Minerva , Munich (1981) |
[a2] | S.A. Rusakov, "The subgroup structure of Dedekind $n$-ary groups" , Finite groups (Proc. Gomel. Sem.) , Minsk (1978) pp. 81–104 (In Russian) |
[a3] | S.A. Rusakov, "On the theory of nilpotent $n$-ary groups" , Finite groups (Proc. Gomel. Sem.) , Minsk (1978) pp. 104–130 (In Russian) |
How to Cite This Entry:
N-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=N-group&oldid=17675
This article was adapted from an original article by V.D. Belousov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article