Difference between revisions of "Potential operator"
From Encyclopedia of Mathematics
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0741301.png | ||
+ | $#A+1 = 8 n = 0 | ||
+ | $#C+1 = 8 : ~/encyclopedia/old_files/data/P074/P.0704130 Potential operator | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A mapping $ A $ | |
+ | of a [[Banach space|Banach space]] $ X $ | ||
+ | into the dual space $ X ^ {*} $ | ||
+ | that is the gradient of some functional $ f \in X ^ {*} $, | ||
+ | i.e. is such that | ||
− | + | $$ | |
+ | \langle A x , h \rangle = \lim\limits _ { t\rightarrow } 0 \ | ||
+ | |||
+ | \frac{f ( x + t h ) - f ( x) }{t} | ||
+ | . | ||
+ | $$ | ||
+ | |||
+ | For instance, any bounded [[Self-adjoint operator|self-adjoint operator]] $ A $ | ||
+ | defined on a Hilbert space $ H $ | ||
+ | is potential: | ||
+ | |||
+ | $$ | ||
+ | Ax = \mathop{\rm grad} \left \{ | ||
+ | \frac{1}{2} | ||
+ | \langle A x , x \rangle \right \} ,\ \ | ||
+ | x \in H . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.M. Vainberg, "Variational method and method of monotone operators in the theory of nonlinear equations" , Wiley (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Gajewski, K. Gröger, K. Zacharias, "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen" , Akademie Verlag (1974)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.M. Vainberg, "Variational method and method of monotone operators in the theory of nonlinear equations" , Wiley (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Gajewski, K. Gröger, K. Zacharias, "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen" , Akademie Verlag (1974)</TD></TR></table> |
Latest revision as of 08:07, 6 June 2020
A mapping $ A $
of a Banach space $ X $
into the dual space $ X ^ {*} $
that is the gradient of some functional $ f \in X ^ {*} $,
i.e. is such that
$$ \langle A x , h \rangle = \lim\limits _ { t\rightarrow } 0 \ \frac{f ( x + t h ) - f ( x) }{t} . $$
For instance, any bounded self-adjoint operator $ A $ defined on a Hilbert space $ H $ is potential:
$$ Ax = \mathop{\rm grad} \left \{ \frac{1}{2} \langle A x , x \rangle \right \} ,\ \ x \in H . $$
References
[1] | M.M. Vainberg, "Variational method and method of monotone operators in the theory of nonlinear equations" , Wiley (1973) (Translated from Russian) |
[2] | H. Gajewski, K. Gröger, K. Zacharias, "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen" , Akademie Verlag (1974) |
How to Cite This Entry:
Potential operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Potential_operator&oldid=17586
Potential operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Potential_operator&oldid=17586
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article