Namespaces
Variants
Actions

Difference between revisions of "Boundary value problem, complex-variable methods"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
b0173401.png
 +
$#A+1 = 122 n = 0
 +
$#C+1 = 122 : ~/encyclopedia/old_files/data/B017/B.0107340 Boundary value problem, complex\AAhvariable methods
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Methods for studying boundary value problems for partial differential equations in which one uses representations of solutions in terms of analytic functions of a complex variable.
 
Methods for studying boundary value problems for partial differential equations in which one uses representations of solutions in terms of analytic functions of a complex variable.
  
 
Given a second-order elliptic equation
 
Given a second-order elliptic equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b0173401.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\Delta u + a (x, y)
 +
 
 +
\frac{\partial  u }{\partial  x }
 +
+
 +
b (x, y)
 +
\frac{\partial  u }{\partial  y }
 +
+
 +
c (x, y) u  = 0,
 +
$$
 +
 
 +
where  $  a, b, c $
 +
are analytic functions of the real variables  $  x, y $
 +
in some domain  $  D _ {0} $
 +
of the  $  z $-
 +
plane,  $  z = x + iy $,
 +
consider the following boundary value problem: Find a solution of equation (1), regular in a simply-connected domain  $  S \subset  D _ {0} $,
 +
satisfying the boundary condition
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b0173402.png" /> are analytic functions of the real variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b0173403.png" /> in some domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b0173404.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b0173405.png" />-plane, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b0173406.png" />, consider the following boundary value problem: Find a solution of equation (1), regular in a simply-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b0173407.png" />, satisfying the boundary condition
+
$$ \tag{2 }
 +
R (u)  \equiv \
 +
\sum _ {0 \leq  j + k \leq  m }
 +
\left [
 +
a _ {jk} (t)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b0173408.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
\frac{\partial  ^ {j + k } u }{\partial  x  ^ {j} \partial  y  ^ {k} }
 +
+
 +
T _ {jk} \left (
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b0173409.png" />, and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734010.png" /> are linear operators mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734011.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734012.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734013.png" /> completely continuous.
+
\frac{\partial  ^ {j + k } u }{\partial  x  ^ {j} \partial  y  ^ {k} }
 +
 
 +
\right )  \right ]  =  f (t),
 +
$$
 +
 
 +
where $  a _ {jk} (t), f (t) \in C _  \alpha  ( \partial  S), 0 < \alpha < 1 $,  
 +
and the $  T _ {jk} $
 +
are linear operators mapping $  C _  \alpha  ( \partial  S) $
 +
into $  C _  \alpha  ( \partial  S) $,  
 +
with $  T _ {m - k, k }  $
 +
completely continuous.
  
 
This problem includes as special cases the well-known classical boundary value problems of Dirichlet, Neumann, Poincaré, etc.
 
This problem includes as special cases the well-known classical boundary value problems of Dirichlet, Neumann, Poincaré, etc.
Line 15: Line 60:
 
Using the formula for the general representation of solutions (see [[Differential equation, partial, complex-variable methods|Differential equation, partial, complex-variable methods]]),
 
Using the formula for the general representation of solutions (see [[Differential equation, partial, complex-variable methods|Differential equation, partial, complex-variable methods]]),
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734014.png" /></td> </tr></table>
+
$$
 +
u (x, y)  = \
 +
\mathop{\rm Re}  \left \{
 +
G (z, \overline{z}\; _ {0} , z, \overline{z}\; )
 +
\Phi (z)\right . -
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734015.png" /></td> </tr></table>
+
$$
 +
- \left .
 +
\int\limits _ {z _ {0} } ^ { {z }  } \Phi (t)
 +
\frac \partial {\partial
 +
t }
 +
G (t, \overline{z}\; _ {0} , z, \overline{z}\; )  dt  \right \} ,
 +
$$
  
 
one reduces the problem to an equivalent boundary value problem for analytic functions:
 
one reduces the problem to an equivalent boundary value problem for analytic functions:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
\mathop{\rm Re}  \sum _ {k = 0 } ^ { m }
 +
[a _ {k} (t) \Phi  ^ {(k)} (t) +
 +
T _ {k} ( \Phi  ^ {(k)} )]  = f (t),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734017.png" /> are given Hölder-continuous functions, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734019.png" /> is a completely-continuous operator, and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734020.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734021.png" /> are linear operators.
+
where $  a _ {k} (t) $
 +
are given Hölder-continuous functions, $  t \in \partial  S $,  
 +
$  T _ {m} $
 +
is a completely-continuous operator, and the $  T _ {k} $
 +
$  (k = 0 \dots m - 1 ) $
 +
are linear operators.
  
Suppose that the finite simply-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734022.png" /> is bounded by a closed Lyapunov contour (see [[Lyapunov surfaces and curves|Lyapunov surfaces and curves]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734023.png" /> and that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734024.png" />-th derivative, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734025.png" />, of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734026.png" /> (the latter is holomorphic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734027.png" />), restricted to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734028.png" />, is a function of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734030.png" />. Then, assuming that the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734031.png" /> is in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734032.png" />, one can express <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734033.png" /> as follows:
+
Suppose that the finite simply-connected domain $  S $
 +
is bounded by a closed Lyapunov contour (see [[Lyapunov surfaces and curves|Lyapunov surfaces and curves]]) $  \partial  S $
 +
and that the $  m $-
 +
th derivative, $  m \geq  0 $,  
 +
of the function $  \Phi (z) $(
 +
the latter is holomorphic in $  S $),  
 +
restricted to $  \partial  S $,  
 +
is a function of class $  C _  \alpha  $,
 +
$  0 < \alpha < 1 $.  
 +
Then, assuming that the point $  z = 0 $
 +
is in $  S $,  
 +
one can express $  \Phi (z) $
 +
as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734034.png" /></td> </tr></table>
+
$$
 +
\Phi (z)  = \
 +
\int\limits _ {\partial  S }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734035.png" /></td> </tr></table>
+
\frac{t \mu (t)  dt }{t - z }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734036.png" /></td> </tr></table>
+
+ ic,\  \textrm{ if }  m = 0;
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734037.png" /> is a real function of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734039.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734040.png" /> is a real constant; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734042.png" /> are uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734043.png" />.
+
$$
 +
\Phi (z)  = \int\limits _ {\partial  S } \mu (t) \left ( 1 -
 +
{
 +
\frac{z}{t}
 +
} \right ) ^ {m - 1 }  \mathop{\rm ln}  \left ( 1 - {
 +
\frac{z}{t}
 +
} \right )  dt +
 +
$$
  
Substituting these expressions into the boundary condition (3), one obtains a singular integral equation, equivalent to problem (2), for the unknown function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734044.png" />:
+
$$
 +
+
 +
\int\limits _ {\partial  S } \mu (t) dt + ic,\  \textrm{ if }  m \geq  1,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734045.png" /></td> </tr></table>
+
where  $  \mu (t) $
 +
is a real function of class $  C _  \alpha  ( \partial  S) $,
 +
$  0 < \alpha < 1 $,
 +
and  $  c $
 +
is a real constant; $  \mu (t) $
 +
and  $  c $
 +
are uniquely determined by  $  \Phi (z) $.
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734046.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734047.png" /> is a completely-continuous operator.
+
Substituting these expressions into the boundary condition (3), one obtains a singular integral equation, equivalent to problem (2), for the unknown function  $  \mu $:
 +
 
 +
$$
 +
K ( \mu )  = \
 +
A (t _ {0} ) \mu ( t _ {0} ) +
 +
 
 +
\frac{B (t _ {0} ) }{\pi i }
 +
 
 +
\int\limits _ {\partial  S }
 +
 
 +
\frac{\mu (t)  dt }{t - t _ {0} }
 +
+
 +
T ( \mu )  = f (t _ {0} ),
 +
$$
 +
 
 +
$  t _ {0} \in \partial  S $,  
 +
where $  T $
 +
is a completely-continuous operator.
  
 
A necessary and sufficient condition for the boundary value problem (2) to be normally solvable is that
 
A necessary and sufficient condition for the boundary value problem (2) to be normally solvable is that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734048.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
a (t)  = \
 +
\sum _ {k = 0 } ^ { m }
 +
i  ^ {k} a _ {m - k }
 +
(t) \neq  0,\ \
 +
t \in \partial  S,\ \
 +
m \geq  0.
 +
$$
  
The Dirichlet problem (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734049.png" />) is always normally solvable. (Henceforth it is assumed throughout that condition (4) is satisfied.)
+
The Dirichlet problem ( $  m = 0 $)  
 +
is always normally solvable. (Henceforth it is assumed throughout that condition (4) is satisfied.)
  
 
The index of the boundary value problem (2) is computed from the formula
 
The index of the boundary value problem (2) is computed from the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734050.png" /></td> </tr></table>
+
$$
 +
\kappa  = \
 +
2 (m + p),\ \
 +
m \geq  1,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734051.png" /> is the increment of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734052.png" /> when the contour <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734053.png" /> is described once in the positive sense. The index of the Dirichlet problem is zero.
+
where $  p $
 +
is the increment of the function $  (1/2 \pi )  \mathop{\rm arg}  \overline{ {a (t) }}\; $
 +
when the contour $  \partial  S $
 +
is described once in the positive sense. The index of the Dirichlet problem is zero.
  
The homogeneous boundary value problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734054.png" /> has a finite number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734055.png" /> of linearly independent solutions, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734056.png" />; the inhomogeneous problem (2) has a solution if and only if
+
The homogeneous boundary value problem $  R (u) = 0 $
 +
has a finite number $  k \geq  0 $
 +
of linearly independent solutions, where $  k \geq  \kappa $;  
 +
the inhomogeneous problem (2) has a solution if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734057.png" /></td> </tr></table>
+
$$
 +
\int\limits _ {\partial  S }
 +
f (t) \nu _ {j} (t)  dS  = 0,\ \
 +
j = 1 \dots \overline{k}\; ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734058.png" /> is a complete system of linearly independent solutions of the associated homogeneous integral equation
+
where $  \nu _ {j} $
 +
is a complete system of linearly independent solutions of the associated homogeneous integral equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734059.png" /></td> </tr></table>
+
$$
 +
k  ^  \prime  ( \nu )  = \
 +
A (t _ {0} ) \nu (t _ {0} ) -
  
The boundary value problem (2) has a solution, whatever the free term on the right, if and only if there exist exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734060.png" /> linearly independent solutions of the associated homogeneous problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734061.png" />. Consequently, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734062.png" /> the homogeneous boundary value problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734063.png" /> always has at least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734064.png" /> linearly independent solutions; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734065.png" /> the inhomogeneous problem (2) is not solvable for an arbitrary free term on the right, but at least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734066.png" /> solvability conditions must be satisfied.
+
\frac{1}{\pi i }
  
Necessary and sufficient conditions for the solvability of an inhomogeneous boundary value problem may be formulated in terms of the completeness of a certain system of functions. The kernel and system of functions may be constructed explicitly using the Riemann function of equation (1) and the coefficients of the boundary conditions. For example, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734067.png" /> be some complete system of solutions in the basic domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734068.png" /> of equation (1), and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734069.png" />. Then a necessary and sufficient condition for problem (2) to be solvable for any free right-hand side is that the system of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734070.png" /> be complete on the boundary.
+
\int\limits _ {\partial  S }
 +
 
 +
\frac{B (t) \nu (t)  dt }{t - t _ {0} }
 +
+
 +
T ( \nu )  =  0.
 +
$$
 +
 
 +
The boundary value problem (2) has a solution, whatever the free term on the right, if and only if there exist exactly  $  \kappa $
 +
linearly independent solutions of the associated homogeneous problem  $  R (u) = 0 $.
 +
Consequently, if  $  \kappa > 0 $
 +
the homogeneous boundary value problem  $  R (u) = 0 $
 +
always has at least  $  \kappa $
 +
linearly independent solutions; if  $  \kappa < 0 $
 +
the inhomogeneous problem (2) is not solvable for an arbitrary free term on the right, but at least  $  | \kappa | $
 +
solvability conditions must be satisfied.
 +
 
 +
Necessary and sufficient conditions for the solvability of an inhomogeneous boundary value problem may be formulated in terms of the completeness of a certain system of functions. The kernel and system of functions may be constructed explicitly using the Riemann function of equation (1) and the coefficients of the boundary conditions. For example, let $  \{ u _ {k} \} $
 +
be some complete system of solutions in the basic domain $  D _ {0} $
 +
of equation (1), and let $  S \subset  D _ {0} $.  
 +
Then a necessary and sufficient condition for problem (2) to be solvable for any free right-hand side is that the system of functions $  \{ R (u _ {k} ) \} $
 +
be complete on the boundary.
  
 
Very complete results have been obtained for the following boundary value problem (the generalized Riemann–Hilbert problem): Find a solution of the equation
 
Very complete results have been obtained for the following boundary value problem (the generalized Riemann–Hilbert problem): Find a solution of the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734071.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5 }
 +
\partial  _ {\overline{z}\; }  w +
 +
A (z) w + B (z) \overline{w}\; = f (z),\ \
 +
w = u + iv,
 +
$$
 +
 
 +
$$
 +
2 \partial  _ {\overline{z}\; = \partial  _ {x} - i \partial  _ {y} ,
 +
$$
 +
 
 +
which is continuous in  $  S + \partial  S $
 +
and satisfies the boundary condition
 +
 
 +
$$ \tag{6 }
 +
\mathop{\rm Re} [ \overline{ {\lambda (z) }}\; , w (z)]  \equiv \
 +
\alpha u + \beta v  =  \gamma ,\ \
 +
z \in \partial  S,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734072.png" /></td> </tr></table>
+
where  $  \alpha , \beta , \gamma $
 +
are real functions of class $  C _  \alpha  ( \partial  S) $,
 +
$  0 < \alpha < 1 $,
 +
with  $  \alpha  ^ {2} + \beta  ^ {2} = 1 $.  
 +
The domain  $  S $
 +
may be multiply connected. A problem of this type may be reduced to an equivalent singular integral equation; this yields a full qualitative analysis of the boundary value problem (6).
  
which is continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734073.png" /> and satisfies the boundary condition
+
Suppose that the boundary  $  \partial  S $
 +
of  $  S $
 +
is the union of a finite number of simple closed curves  $  \partial  S _ {0} \dots \partial  S _ {m} $
 +
satisfying the Lyapunov conditions. Since the forms of the equation and the boundary condition are preserved under conformal mapping, it may be assumed without loss of generality that  $  \partial  S _ {0} $
 +
is the unit circle with centre at  $  z = 0 $,
 +
the latter being a point of  $  S $,
 +
while  $  \partial  S _ {1} \dots \partial  S _ {m} $
 +
are circles lying outside  $  \partial  S _ {0} $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734074.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
+
The index of problem (6) is defined as the integer  $  n $
 +
equal to the increment of  $  (1/2 \pi )  \mathop{\rm arg}  [ \alpha ( \zeta ) + i \beta ( \zeta )] $
 +
when the point  $  \zeta $
 +
describes  $  \partial  S $
 +
once in the positive sense. The boundary condition can be reduced to the simpler form
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734075.png" /> are real functions of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734076.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734077.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734078.png" />. The domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734079.png" /> may be multiply connected. A problem of this type may be reduced to an equivalent singular integral equation; this yields a full qualitative analysis of the boundary value problem (6).
+
$$
 +
\mathop{\rm Re}  [z  ^ {-n} e ^ {ic (z) } w (z)]  = \gamma ,\ \
 +
z \in \partial  S,
 +
$$
  
Suppose that the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734080.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734081.png" /> is the union of a finite number of simple closed curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734082.png" /> satisfying the Lyapunov conditions. Since the forms of the equation and the boundary condition are preserved under conformal mapping, it may be assumed without loss of generality that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734083.png" /> is the unit circle with centre at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734084.png" />, the latter being a point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734085.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734086.png" /> are circles lying outside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734087.png" />.
+
where  $  c (z) = c _ {j} $
 +
on  $  \partial  S _ {j} $,  
 +
with $  c _ {0} = 0 $,  
 +
while $  c _ {1} \dots c _ {m} $
 +
are real constants, uniquely expressible in terms of  $  \alpha $
 +
and  $  \beta $.  
 +
The index of the adjoint problem
  
The index of problem (6) is defined as the integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734088.png" /> equal to the increment of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734089.png" /> when the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734090.png" /> describes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734091.png" /> once in the positive sense. The boundary condition can be reduced to the simpler form
+
$$ \tag{7 }
 +
\left .
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734092.png" /></td> </tr></table>
+
\begin{array}{ll}
 +
\partial  _ {\overline{z}\; }  w _ {*} - Aw _ {*} - B \overline{w}\; _ {*}  = 0,  & z \in S,  \\
 +
\mathop{\rm Re} \left \{ ( \alpha + i \beta )
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734093.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734094.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734095.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734096.png" /> are real constants, uniquely expressible in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734097.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734098.png" />. The index of the adjoint problem
+
\frac{d \overline{z}\; }{ds}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b01734099.png" /></td> <td valign="top" style="width:5%;text-align:right;">(7)</td></tr></table>
+
w _ {*} (z) \right \}  = 0,  & z \in \partial  S,  \\
 +
\end{array}
  
is calculated by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340100.png" />.
+
\right \}
 +
$$
 +
 
 +
is calculated by the formula $  n  ^  \prime  = - n + m - 1 $.
  
 
Problem (6) has a solution if and only if
 
Problem (6) has a solution if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340101.png" /></td> </tr></table>
+
$$
 +
\int\limits _ {\partial  S }
 +
( \alpha + i \beta )
 +
w _ {*} \gamma  ds  = 0,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340102.png" /> is an arbitrary solution of the adjoint problem.
+
where $  w _ {*} $
 +
is an arbitrary solution of the adjoint problem.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340103.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340104.png" /> be the numbers of linearly independent solutions of the homogeneous problems (6) and (7), respectively. Then
+
Let $  e $
 +
and $  e  ^  \prime  $
 +
be the numbers of linearly independent solutions of the homogeneous problems (6) and (7), respectively. Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340105.png" /></td> </tr></table>
+
$$
 +
e - e  ^  \prime  = \
 +
n - n  ^  \prime  = \
 +
2n + 1 - m.
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340106.png" />, the homogeneous problem (6) has no non-trivial solutions. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340107.png" />, it has exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340108.png" /> linearly independent solutions, while the inhomogeneous problem (6) is always solvable. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340109.png" />, the inhomogeneous problem (6) is solvable if and only if
+
If $  n < 0 $,  
 +
the homogeneous problem (6) has no non-trivial solutions. If $  n > m - 1 $,  
 +
it has exactly $  e = 2n + 1 - m $
 +
linearly independent solutions, while the inhomogeneous problem (6) is always solvable. If $  n < 0 $,  
 +
the inhomogeneous problem (6) is solvable if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340110.png" /></td> </tr></table>
+
$$
 +
\int\limits _ {\partial  S }
 +
( \alpha + i \beta )
 +
w _ {* j }  \gamma  ds  = 0,\ \
 +
j = 1, 2 ,\dots ; \ \
 +
e  ^  \prime  = m - 2n - 1,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340111.png" /> is a complete system of solutions of the homogeneous problem (7). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340112.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340113.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340114.png" /> and all solutions of the homogeneous problem problem (6) are given by
+
where $  w _ {* j }  $
 +
is a complete system of solutions of the homogeneous problem (7). If $  m = 0 $
 +
and $  n = 0 $,  
 +
then $  e = 1 $
 +
and all solutions of the homogeneous problem problem (6) are given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340115.png" /></td> </tr></table>
+
$$
 +
w (z)  = \
 +
ice ^ {\omega _ {0} (z) } ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340116.png" /> is a real constant and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340117.png" /> a continuous function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340118.png" />.
+
where $  c $
 +
is a real constant and $  \omega _ {0} $
 +
a continuous function on $  S + \partial  S $.
  
The above results completely characterize the problem in the simply-connected (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340119.png" />) and multiply-connected (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340120.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340121.png" />) cases. The cases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017340/b017340122.png" /> require special examination; they have also been worked out in considerable detail.
+
The above results completely characterize the problem in the simply-connected ( $  m = 0 $)  
 +
and multiply-connected ( $  n < 0 $,  
 +
$  n > m - 1 $)  
 +
cases. The cases 0 \leq  n \leq  m - 1 $
 +
require special examination; they have also been worked out in considerable detail.
  
 
Boundary value problems of the type of the [[Poincaré problem|Poincaré problem]] have also been studied for equation (5).
 
Boundary value problems of the type of the [[Poincaré problem|Poincaré problem]] have also been studied for equation (5).
  
 
For references see [[Differential equation, partial, complex-variable methods|Differential equation, partial, complex-variable methods]].
 
For references see [[Differential equation, partial, complex-variable methods|Differential equation, partial, complex-variable methods]].
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  I.N. Vekua,  "Generalized analytic functions" , Pergamon  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N.P. Vekua,  "Systems of singular integral equations and some boundary value problems" , Moscow  (1970)  (In Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.N. Vekua,  "New methods for solving elliptic equations" , North-Holland  (1968)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  I.N. Vekua,  "Generalized analytic functions" , Pergamon  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N.P. Vekua,  "Systems of singular integral equations and some boundary value problems" , Moscow  (1970)  (In Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.N. Vekua,  "New methods for solving elliptic equations" , North-Holland  (1968)  (Translated from Russian)</TD></TR></table>

Latest revision as of 06:29, 30 May 2020


Methods for studying boundary value problems for partial differential equations in which one uses representations of solutions in terms of analytic functions of a complex variable.

Given a second-order elliptic equation

$$ \tag{1 } \Delta u + a (x, y) \frac{\partial u }{\partial x } + b (x, y) \frac{\partial u }{\partial y } + c (x, y) u = 0, $$

where $ a, b, c $ are analytic functions of the real variables $ x, y $ in some domain $ D _ {0} $ of the $ z $- plane, $ z = x + iy $, consider the following boundary value problem: Find a solution of equation (1), regular in a simply-connected domain $ S \subset D _ {0} $, satisfying the boundary condition

$$ \tag{2 } R (u) \equiv \ \sum _ {0 \leq j + k \leq m } \left [ a _ {jk} (t) \frac{\partial ^ {j + k } u }{\partial x ^ {j} \partial y ^ {k} } + T _ {jk} \left ( \frac{\partial ^ {j + k } u }{\partial x ^ {j} \partial y ^ {k} } \right ) \right ] = f (t), $$

where $ a _ {jk} (t), f (t) \in C _ \alpha ( \partial S), 0 < \alpha < 1 $, and the $ T _ {jk} $ are linear operators mapping $ C _ \alpha ( \partial S) $ into $ C _ \alpha ( \partial S) $, with $ T _ {m - k, k } $ completely continuous.

This problem includes as special cases the well-known classical boundary value problems of Dirichlet, Neumann, Poincaré, etc.

Using the formula for the general representation of solutions (see Differential equation, partial, complex-variable methods),

$$ u (x, y) = \ \mathop{\rm Re} \left \{ G (z, \overline{z}\; _ {0} , z, \overline{z}\; ) \Phi (z)\right . - $$

$$ - \left . \int\limits _ {z _ {0} } ^ { {z } } \Phi (t) \frac \partial {\partial t } G (t, \overline{z}\; _ {0} , z, \overline{z}\; ) dt \right \} , $$

one reduces the problem to an equivalent boundary value problem for analytic functions:

$$ \tag{3 } \mathop{\rm Re} \sum _ {k = 0 } ^ { m } [a _ {k} (t) \Phi ^ {(k)} (t) + T _ {k} ( \Phi ^ {(k)} )] = f (t), $$

where $ a _ {k} (t) $ are given Hölder-continuous functions, $ t \in \partial S $, $ T _ {m} $ is a completely-continuous operator, and the $ T _ {k} $ $ (k = 0 \dots m - 1 ) $ are linear operators.

Suppose that the finite simply-connected domain $ S $ is bounded by a closed Lyapunov contour (see Lyapunov surfaces and curves) $ \partial S $ and that the $ m $- th derivative, $ m \geq 0 $, of the function $ \Phi (z) $( the latter is holomorphic in $ S $), restricted to $ \partial S $, is a function of class $ C _ \alpha $, $ 0 < \alpha < 1 $. Then, assuming that the point $ z = 0 $ is in $ S $, one can express $ \Phi (z) $ as follows:

$$ \Phi (z) = \ \int\limits _ {\partial S } \frac{t \mu (t) dt }{t - z } + ic,\ \textrm{ if } m = 0; $$

$$ \Phi (z) = \int\limits _ {\partial S } \mu (t) \left ( 1 - { \frac{z}{t} } \right ) ^ {m - 1 } \mathop{\rm ln} \left ( 1 - { \frac{z}{t} } \right ) dt + $$

$$ + \int\limits _ {\partial S } \mu (t) dt + ic,\ \textrm{ if } m \geq 1, $$

where $ \mu (t) $ is a real function of class $ C _ \alpha ( \partial S) $, $ 0 < \alpha < 1 $, and $ c $ is a real constant; $ \mu (t) $ and $ c $ are uniquely determined by $ \Phi (z) $.

Substituting these expressions into the boundary condition (3), one obtains a singular integral equation, equivalent to problem (2), for the unknown function $ \mu $:

$$ K ( \mu ) = \ A (t _ {0} ) \mu ( t _ {0} ) + \frac{B (t _ {0} ) }{\pi i } \int\limits _ {\partial S } \frac{\mu (t) dt }{t - t _ {0} } + T ( \mu ) = f (t _ {0} ), $$

$ t _ {0} \in \partial S $, where $ T $ is a completely-continuous operator.

A necessary and sufficient condition for the boundary value problem (2) to be normally solvable is that

$$ \tag{4 } a (t) = \ \sum _ {k = 0 } ^ { m } i ^ {k} a _ {m - k } (t) \neq 0,\ \ t \in \partial S,\ \ m \geq 0. $$

The Dirichlet problem ( $ m = 0 $) is always normally solvable. (Henceforth it is assumed throughout that condition (4) is satisfied.)

The index of the boundary value problem (2) is computed from the formula

$$ \kappa = \ 2 (m + p),\ \ m \geq 1, $$

where $ p $ is the increment of the function $ (1/2 \pi ) \mathop{\rm arg} \overline{ {a (t) }}\; $ when the contour $ \partial S $ is described once in the positive sense. The index of the Dirichlet problem is zero.

The homogeneous boundary value problem $ R (u) = 0 $ has a finite number $ k \geq 0 $ of linearly independent solutions, where $ k \geq \kappa $; the inhomogeneous problem (2) has a solution if and only if

$$ \int\limits _ {\partial S } f (t) \nu _ {j} (t) dS = 0,\ \ j = 1 \dots \overline{k}\; , $$

where $ \nu _ {j} $ is a complete system of linearly independent solutions of the associated homogeneous integral equation

$$ k ^ \prime ( \nu ) = \ A (t _ {0} ) \nu (t _ {0} ) - \frac{1}{\pi i } \int\limits _ {\partial S } \frac{B (t) \nu (t) dt }{t - t _ {0} } + T ( \nu ) = 0. $$

The boundary value problem (2) has a solution, whatever the free term on the right, if and only if there exist exactly $ \kappa $ linearly independent solutions of the associated homogeneous problem $ R (u) = 0 $. Consequently, if $ \kappa > 0 $ the homogeneous boundary value problem $ R (u) = 0 $ always has at least $ \kappa $ linearly independent solutions; if $ \kappa < 0 $ the inhomogeneous problem (2) is not solvable for an arbitrary free term on the right, but at least $ | \kappa | $ solvability conditions must be satisfied.

Necessary and sufficient conditions for the solvability of an inhomogeneous boundary value problem may be formulated in terms of the completeness of a certain system of functions. The kernel and system of functions may be constructed explicitly using the Riemann function of equation (1) and the coefficients of the boundary conditions. For example, let $ \{ u _ {k} \} $ be some complete system of solutions in the basic domain $ D _ {0} $ of equation (1), and let $ S \subset D _ {0} $. Then a necessary and sufficient condition for problem (2) to be solvable for any free right-hand side is that the system of functions $ \{ R (u _ {k} ) \} $ be complete on the boundary.

Very complete results have been obtained for the following boundary value problem (the generalized Riemann–Hilbert problem): Find a solution of the equation

$$ \tag{5 } \partial _ {\overline{z}\; } w + A (z) w + B (z) \overline{w}\; = f (z),\ \ w = u + iv, $$

$$ 2 \partial _ {\overline{z}\; } = \partial _ {x} - i \partial _ {y} , $$

which is continuous in $ S + \partial S $ and satisfies the boundary condition

$$ \tag{6 } \mathop{\rm Re} [ \overline{ {\lambda (z) }}\; , w (z)] \equiv \ \alpha u + \beta v = \gamma ,\ \ z \in \partial S, $$

where $ \alpha , \beta , \gamma $ are real functions of class $ C _ \alpha ( \partial S) $, $ 0 < \alpha < 1 $, with $ \alpha ^ {2} + \beta ^ {2} = 1 $. The domain $ S $ may be multiply connected. A problem of this type may be reduced to an equivalent singular integral equation; this yields a full qualitative analysis of the boundary value problem (6).

Suppose that the boundary $ \partial S $ of $ S $ is the union of a finite number of simple closed curves $ \partial S _ {0} \dots \partial S _ {m} $ satisfying the Lyapunov conditions. Since the forms of the equation and the boundary condition are preserved under conformal mapping, it may be assumed without loss of generality that $ \partial S _ {0} $ is the unit circle with centre at $ z = 0 $, the latter being a point of $ S $, while $ \partial S _ {1} \dots \partial S _ {m} $ are circles lying outside $ \partial S _ {0} $.

The index of problem (6) is defined as the integer $ n $ equal to the increment of $ (1/2 \pi ) \mathop{\rm arg} [ \alpha ( \zeta ) + i \beta ( \zeta )] $ when the point $ \zeta $ describes $ \partial S $ once in the positive sense. The boundary condition can be reduced to the simpler form

$$ \mathop{\rm Re} [z ^ {-n} e ^ {ic (z) } w (z)] = \gamma ,\ \ z \in \partial S, $$

where $ c (z) = c _ {j} $ on $ \partial S _ {j} $, with $ c _ {0} = 0 $, while $ c _ {1} \dots c _ {m} $ are real constants, uniquely expressible in terms of $ \alpha $ and $ \beta $. The index of the adjoint problem

$$ \tag{7 } \left . \begin{array}{ll} \partial _ {\overline{z}\; } w _ {*} - Aw _ {*} - B \overline{w}\; _ {*} = 0, & z \in S, \\ \mathop{\rm Re} \left \{ ( \alpha + i \beta ) \frac{d \overline{z}\; }{ds} w _ {*} (z) \right \} = 0, & z \in \partial S, \\ \end{array} \right \} $$

is calculated by the formula $ n ^ \prime = - n + m - 1 $.

Problem (6) has a solution if and only if

$$ \int\limits _ {\partial S } ( \alpha + i \beta ) w _ {*} \gamma ds = 0, $$

where $ w _ {*} $ is an arbitrary solution of the adjoint problem.

Let $ e $ and $ e ^ \prime $ be the numbers of linearly independent solutions of the homogeneous problems (6) and (7), respectively. Then

$$ e - e ^ \prime = \ n - n ^ \prime = \ 2n + 1 - m. $$

If $ n < 0 $, the homogeneous problem (6) has no non-trivial solutions. If $ n > m - 1 $, it has exactly $ e = 2n + 1 - m $ linearly independent solutions, while the inhomogeneous problem (6) is always solvable. If $ n < 0 $, the inhomogeneous problem (6) is solvable if and only if

$$ \int\limits _ {\partial S } ( \alpha + i \beta ) w _ {* j } \gamma ds = 0,\ \ j = 1, 2 ,\dots ; \ \ e ^ \prime = m - 2n - 1, $$

where $ w _ {* j } $ is a complete system of solutions of the homogeneous problem (7). If $ m = 0 $ and $ n = 0 $, then $ e = 1 $ and all solutions of the homogeneous problem problem (6) are given by

$$ w (z) = \ ice ^ {\omega _ {0} (z) } , $$

where $ c $ is a real constant and $ \omega _ {0} $ a continuous function on $ S + \partial S $.

The above results completely characterize the problem in the simply-connected ( $ m = 0 $) and multiply-connected ( $ n < 0 $, $ n > m - 1 $) cases. The cases $ 0 \leq n \leq m - 1 $ require special examination; they have also been worked out in considerable detail.

Boundary value problems of the type of the Poincaré problem have also been studied for equation (5).

For references see Differential equation, partial, complex-variable methods.

Comments

References

[a1] I.N. Vekua, "Generalized analytic functions" , Pergamon (1962) (Translated from Russian)
[a2] N.P. Vekua, "Systems of singular integral equations and some boundary value problems" , Moscow (1970) (In Russian)
[a3] I.N. Vekua, "New methods for solving elliptic equations" , North-Holland (1968) (Translated from Russian)
How to Cite This Entry:
Boundary value problem, complex-variable methods. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boundary_value_problem,_complex-variable_methods&oldid=17473
This article was adapted from an original article by I.N. Vekua (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article