Difference between revisions of "Lindelöf principle"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0589701.png | ||
+ | $#A+1 = 77 n = 0 | ||
+ | $#C+1 = 77 : ~/encyclopedia/old_files/data/L058/L.0508970 Lindel\AGof principle | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A fundamental qualitative variational principle (cf. [[Variational principles (in complex function theory)|Variational principles (in complex function theory)]]) in the theory of [[Conformal mapping|conformal mapping]], discovered by E. Lindelöf [[#References|[1]]]. Suppose that two simply-connected domains $ D $ | |
+ | and $ \widetilde{D} $ | ||
+ | in the complex $ z $- | ||
+ | plane are such that their boundaries $ \Gamma $ | ||
+ | and $ \widetilde \Gamma $, | ||
+ | respectively, consist of finitely many Jordans arcs, $ \widetilde{D} $ | ||
+ | is contained in $ D $, | ||
+ | and suppose that the point $ z _ {0} \in \widetilde{D} \subset D $. | ||
+ | Suppose also that $ w = f ( z) $ | ||
+ | and $ w = \widetilde{f} ( z) $ | ||
+ | are functions that realise a conformal mapping of $ D $ | ||
+ | and $ \widetilde{D} $, | ||
+ | respectively, onto the unit disc $ \Delta = \{ {w } : {| w | < 1 } \} $ | ||
+ | and that $ f ( z _ {0} ) = 0 $, | ||
+ | $ \widetilde{f} ( z _ {0} ) = 0 $. | ||
+ | The Lindelöf principle states that under these conditions: 1) the inverse image $ \widetilde{D} _ \rho $ | ||
+ | of the domain $ | w | < \rho $, | ||
+ | $ 0 < \rho < 1 $, | ||
+ | under the mapping $ w = \widetilde{f} ( z) $ | ||
+ | lies inside the inverse image $ D _ \rho $ | ||
+ | of the same domain $ | w | < \rho $ | ||
+ | under the mapping $ w = f ( z) $, | ||
+ | and their boundaries $ \widetilde \Gamma _ \rho $ | ||
+ | and $ \Gamma _ \rho $ | ||
+ | can be in contact only if $ \widetilde{D} = D $; | ||
+ | 2) $ | \widetilde{f} {} ^ { \prime } ( z _ {0} ) | \geq | f ^ { \prime } ( z _ {0} ) | $, | ||
+ | equality being possible only if $ \widetilde{D} = D $; | ||
+ | and 3) if there is a common point $ z _ {1} $ | ||
+ | of $ \widetilde \Gamma $ | ||
+ | and $ \Gamma $, | ||
+ | then | ||
− | + | $$ | |
+ | | \widetilde{f} {} ^ { \prime } ( z _ {1} ) | \leq | f ^ { \prime } ( z _ {1} ) | , | ||
+ | $$ | ||
− | + | equality being possible only if $ \widetilde{D} = D $. | |
+ | In other words, if the boundary $ \Gamma $ | ||
+ | of $ D $ | ||
+ | is pushed inward, then: a) all level curves $ \Gamma _ \rho $, | ||
+ | that is, the inverse images of the circles $ | w | = \rho $, | ||
+ | are contracted; b) the stretching at the point $ z _ {0} $ | ||
+ | increases; and c) the stretching at fixed points $ z _ {1} $ | ||
+ | of the boundary decreases. | ||
− | + | From the information given in the Lindelöf principle it also follows that the length of the image of an arc $ \gamma $ | |
+ | of the boundary $ \Gamma $ | ||
+ | subject to indentation along $ \widetilde \gamma $ | ||
+ | never exceeds the length of the image of $ \widetilde \gamma $( | ||
+ | $ \textrm{ length } f ( \gamma ) \leq \textrm{ length } \widetilde{f} ( \widetilde \gamma ) $), | ||
+ | and equality holds only in case $ \widetilde \Gamma = \Gamma $. | ||
+ | This consequence of the Lindelöf principle is also known as Montel's principle. | ||
− | + | In the more general situation when $ \widetilde{D} $ | |
+ | and $ D $ | ||
+ | are finitely-connected domains bounded by finitely many Jordan curves situated in the $ z $- | ||
+ | plane and $ w $- | ||
+ | plane, respectively, and $ w = f ( z) $ | ||
+ | is a meromorphic function in $ \widetilde{D} $ | ||
+ | with values in $ D $, | ||
+ | the Lindelöf principle consists of the following. If $ w _ {0} $ | ||
+ | is a point in the image $ f ( \widetilde{D} ) $ | ||
+ | of $ \widetilde{D} $, | ||
+ | $ \{ z _ \nu \} $, | ||
+ | $ \nu = 0 , 1 \dots $ | ||
+ | is the set of points of $ \widetilde{D} $ | ||
+ | for which $ f ( z _ \nu ) = w _ {0} $, | ||
+ | $ m _ \nu $ | ||
+ | is the multiplicity of the zero $ z _ \nu $ | ||
+ | of the function $ f ( z) - w _ {0} $, | ||
+ | $ \widetilde{g} ( z , z _ \nu ) $ | ||
+ | is the [[Green function|Green function]] of $ \widetilde{D} $ | ||
+ | with pole $ z _ \nu $, | ||
+ | and $ g ( w , w _ {0} ) $ | ||
+ | is the Green function of $ D $ | ||
+ | with pole $ w _ {0} $, | ||
+ | then the inequality | ||
− | + | $$ \tag{1 } | |
+ | g ( w , w _ {0} ) \geq \sum _ {\nu = 0 } ^ \infty | ||
+ | m _ \nu \widetilde{g} ( z , z _ \nu ) | ||
+ | $$ | ||
− | + | holds for all $ z \in \widetilde{D} $, | |
+ | $ w= f ( z) $. | ||
+ | If equality holds in (1) for at least one point $ z \in \widetilde{D} $, | ||
+ | then it holds everywhere in $ \widetilde{D} $. | ||
+ | In particular, the inequality | ||
− | The Lindelöf principle in the general form (1) can be applied to arbitrary domains | + | $$ \tag{2 } |
+ | g ( w , w _ {0} ) \geq \widetilde{g} ( z , z _ {0} ) , | ||
+ | $$ | ||
+ | |||
+ | which follows from (1), was obtained by Lindelöf in [[#References|[1]]]. It implies that the image of the domain $ \{ {z } : {\widetilde{g} ( z , z _ {0} ) > \lambda } \} $ | ||
+ | always lies inside the domain $ \{ {w } : {g ( w , w _ {0} ) > \lambda } \} $. | ||
+ | |||
+ | The Lindelöf principle in the general form (1) can be applied to arbitrary domains $ \widetilde{D} $ | ||
+ | and $ D $, | ||
+ | but the conclusion concerning equality is not generally true here. The Lindelöf principle makes it possible to obtain many quantitative estimates for the variation of a conformal mapping under variation of the domain (see [[#References|[3]]]). It is closely connected with the [[Subordination principle|subordination principle]], and it can also be regarded as a generalization of the [[Schwarz lemma|Schwarz lemma]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Lindelöf, "Mémoire sur certaines inegualités dans la théorie des fonctions monogènes et sur quelques propriétes nouvelles de ces fonctions dans la voisinage d'un point singulier essentiel" ''Acta. Soc. Sci. Fennica'' , '''35''' : 7 (1909) pp. 1–35</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.A. Lavrent'ev, B.V. Shabat, "Methoden der komplexen Funktionentheorie" , Deutsch. Verlag Wissenschaft. (1967) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Stoilov, "The theory of functions of a complex variable" , '''1–2''' , Moscow (1962) (In Russian; translated from Rumanian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.A. Lavrent'ev, "Variational methods for boundary value problems for systems of elliptic equations" , Noordhoff (1963) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Lindelöf, "Mémoire sur certaines inegualités dans la théorie des fonctions monogènes et sur quelques propriétes nouvelles de ces fonctions dans la voisinage d'un point singulier essentiel" ''Acta. Soc. Sci. Fennica'' , '''35''' : 7 (1909) pp. 1–35</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.A. Lavrent'ev, B.V. Shabat, "Methoden der komplexen Funktionentheorie" , Deutsch. Verlag Wissenschaft. (1967) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Stoilov, "The theory of functions of a complex variable" , '''1–2''' , Moscow (1962) (In Russian; translated from Rumanian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.A. Lavrent'ev, "Variational methods for boundary value problems for systems of elliptic equations" , Noordhoff (1963) (Translated from Russian)</TD></TR></table> |
Latest revision as of 22:16, 5 June 2020
A fundamental qualitative variational principle (cf. Variational principles (in complex function theory)) in the theory of conformal mapping, discovered by E. Lindelöf [1]. Suppose that two simply-connected domains $ D $
and $ \widetilde{D} $
in the complex $ z $-
plane are such that their boundaries $ \Gamma $
and $ \widetilde \Gamma $,
respectively, consist of finitely many Jordans arcs, $ \widetilde{D} $
is contained in $ D $,
and suppose that the point $ z _ {0} \in \widetilde{D} \subset D $.
Suppose also that $ w = f ( z) $
and $ w = \widetilde{f} ( z) $
are functions that realise a conformal mapping of $ D $
and $ \widetilde{D} $,
respectively, onto the unit disc $ \Delta = \{ {w } : {| w | < 1 } \} $
and that $ f ( z _ {0} ) = 0 $,
$ \widetilde{f} ( z _ {0} ) = 0 $.
The Lindelöf principle states that under these conditions: 1) the inverse image $ \widetilde{D} _ \rho $
of the domain $ | w | < \rho $,
$ 0 < \rho < 1 $,
under the mapping $ w = \widetilde{f} ( z) $
lies inside the inverse image $ D _ \rho $
of the same domain $ | w | < \rho $
under the mapping $ w = f ( z) $,
and their boundaries $ \widetilde \Gamma _ \rho $
and $ \Gamma _ \rho $
can be in contact only if $ \widetilde{D} = D $;
2) $ | \widetilde{f} {} ^ { \prime } ( z _ {0} ) | \geq | f ^ { \prime } ( z _ {0} ) | $,
equality being possible only if $ \widetilde{D} = D $;
and 3) if there is a common point $ z _ {1} $
of $ \widetilde \Gamma $
and $ \Gamma $,
then
$$ | \widetilde{f} {} ^ { \prime } ( z _ {1} ) | \leq | f ^ { \prime } ( z _ {1} ) | , $$
equality being possible only if $ \widetilde{D} = D $. In other words, if the boundary $ \Gamma $ of $ D $ is pushed inward, then: a) all level curves $ \Gamma _ \rho $, that is, the inverse images of the circles $ | w | = \rho $, are contracted; b) the stretching at the point $ z _ {0} $ increases; and c) the stretching at fixed points $ z _ {1} $ of the boundary decreases.
From the information given in the Lindelöf principle it also follows that the length of the image of an arc $ \gamma $ of the boundary $ \Gamma $ subject to indentation along $ \widetilde \gamma $ never exceeds the length of the image of $ \widetilde \gamma $( $ \textrm{ length } f ( \gamma ) \leq \textrm{ length } \widetilde{f} ( \widetilde \gamma ) $), and equality holds only in case $ \widetilde \Gamma = \Gamma $. This consequence of the Lindelöf principle is also known as Montel's principle.
In the more general situation when $ \widetilde{D} $ and $ D $ are finitely-connected domains bounded by finitely many Jordan curves situated in the $ z $- plane and $ w $- plane, respectively, and $ w = f ( z) $ is a meromorphic function in $ \widetilde{D} $ with values in $ D $, the Lindelöf principle consists of the following. If $ w _ {0} $ is a point in the image $ f ( \widetilde{D} ) $ of $ \widetilde{D} $, $ \{ z _ \nu \} $, $ \nu = 0 , 1 \dots $ is the set of points of $ \widetilde{D} $ for which $ f ( z _ \nu ) = w _ {0} $, $ m _ \nu $ is the multiplicity of the zero $ z _ \nu $ of the function $ f ( z) - w _ {0} $, $ \widetilde{g} ( z , z _ \nu ) $ is the Green function of $ \widetilde{D} $ with pole $ z _ \nu $, and $ g ( w , w _ {0} ) $ is the Green function of $ D $ with pole $ w _ {0} $, then the inequality
$$ \tag{1 } g ( w , w _ {0} ) \geq \sum _ {\nu = 0 } ^ \infty m _ \nu \widetilde{g} ( z , z _ \nu ) $$
holds for all $ z \in \widetilde{D} $, $ w= f ( z) $. If equality holds in (1) for at least one point $ z \in \widetilde{D} $, then it holds everywhere in $ \widetilde{D} $. In particular, the inequality
$$ \tag{2 } g ( w , w _ {0} ) \geq \widetilde{g} ( z , z _ {0} ) , $$
which follows from (1), was obtained by Lindelöf in [1]. It implies that the image of the domain $ \{ {z } : {\widetilde{g} ( z , z _ {0} ) > \lambda } \} $ always lies inside the domain $ \{ {w } : {g ( w , w _ {0} ) > \lambda } \} $.
The Lindelöf principle in the general form (1) can be applied to arbitrary domains $ \widetilde{D} $ and $ D $, but the conclusion concerning equality is not generally true here. The Lindelöf principle makes it possible to obtain many quantitative estimates for the variation of a conformal mapping under variation of the domain (see [3]). It is closely connected with the subordination principle, and it can also be regarded as a generalization of the Schwarz lemma.
References
[1] | E. Lindelöf, "Mémoire sur certaines inegualités dans la théorie des fonctions monogènes et sur quelques propriétes nouvelles de ces fonctions dans la voisinage d'un point singulier essentiel" Acta. Soc. Sci. Fennica , 35 : 7 (1909) pp. 1–35 |
[2] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[3] | M.A. Lavrent'ev, B.V. Shabat, "Methoden der komplexen Funktionentheorie" , Deutsch. Verlag Wissenschaft. (1967) (Translated from Russian) |
[4] | S. Stoilov, "The theory of functions of a complex variable" , 1–2 , Moscow (1962) (In Russian; translated from Rumanian) |
[5] | M.A. Lavrent'ev, "Variational methods for boundary value problems for systems of elliptic equations" , Noordhoff (1963) (Translated from Russian) |
Lindelöf principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lindel%C3%B6f_principle&oldid=17249