Difference between revisions of "Euler-Frobenius polynomials"
(Importing text file) |
(details) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 48 formulas, 48 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | The Euler–Frobenius polynomials $p _ { m } ( x )$ of degree $m - 1 \geq 0$ are characterized by the Frobenius reciprocal identity ([[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]]) | ||
− | + | \begin{equation*} x ^ { m - 1 } p _ { m } \left( \frac { 1 } { x } \right) = p _ { m } ( x ). \end{equation*} | |
− | + | Thus, $p _ { m } ( x )$ is invariant under the reflection | |
− | + | \begin{equation*} x \rightarrow \frac { 1 } { x } \end{equation*} | |
− | + | of the indeterminate $x$. The best way to implement an invariance of this kind is to look for an appropriate space with which the Euler–Frobenius polynomials $( p _ { m } ( x ) ) _ { m \geq 1 }$ are attached in a spectral geometric way. | |
− | + | So, let $E$ denote a symplectic vector space of dimension $m = 2 n$ (cf. also [[Symplectic space|Symplectic space]]). Then the [[Characteristic polynomial|characteristic polynomial]] of each symplectic automorphism of $E$ is an Euler–Frobenius polynomial $p _ { m } ( x )$ of odd degree $m - 1$. | |
− | + | The proof follows from the fact that the determinant of each symplectic automorphism $\sigma$ of $E$ equals $1$, so that there is a natural imbedding | |
− | A consequence is that each eigenvalue | + | \begin{equation*} \operatorname { Sp } ( E ) \hookrightarrow \operatorname { SL } ( E ). \end{equation*} |
+ | |||
+ | Thus, $\sigma \in \operatorname{Sp} ( E )$ preserves the symplectic volume spanned by $m$ vectors of the vector space $E$. | ||
+ | |||
+ | A consequence is that each eigenvalue $\lambda \neq 0$ of a symplectic endomorphism $\sigma$ of $E$ having multiplicity $k$ gives rise to a reciprocal eigenvalue $1 / \lambda$ of the same multiplicity $k$. | ||
In view of the self-reciprocal eigenvalue | In view of the self-reciprocal eigenvalue | ||
− | + | \begin{equation*} \lambda _ { 0 } = - 1 \end{equation*} | |
− | of | + | of $\sigma : E \rightarrow E$ for even $m = 2 n$, of course, spectral theory suggests a complex contour integral representation of the Euler–Frobenius polynomials $( p _ { m } ( x ) ) _ { m \geq 1 }$, as follows. |
− | Let | + | Let $z \neq 0$ denote a complex number such that $| z | \neq 1$. Let $P$ denote a path in the complex plane $\mathbf{C}$ which forms the boundary of a closed vertical strip in the open right or left half-plane of $\mathbf{C}$ according as $| z | > 1$ or $0 < | z | < 1$, respectively. Let $P \hookrightarrow \mathbf{C}$ be oriented so that its topological index satisfies $\operatorname { ind } _ { P } ( \operatorname { log } | z | ) = 1$. Then, for each integer $m \geq 1$, the complex contour integral representation |
− | + | \begin{equation*} p _ { m } ( z ) = \frac { ( z - 1 ) ^ { m + 1 } } { z } \frac { m ! } { 2 \pi i } \int _ { P } \frac { e ^ { w } } { ( e ^ { w } - z ) w ^ { m + 1 } } d w \end{equation*} | |
holds. | holds. | ||
Line 33: | Line 41: | ||
The proof follows from the expansion | The proof follows from the expansion | ||
− | + | \begin{equation*} p _ { m } ( z ) = m ! \sum _ { 0 \leq n \leq m - 1 } b _ { m } ( n + 1 ) z ^ { n } , \quad z \in \mathbf{C}, \end{equation*} | |
− | with strictly positive integer coefficients, where | + | with strictly positive integer coefficients, where $( b _ { m } ) _ { m \geq 0 }$ denote the basis spline functions (cf. [[#References|[a3]]] and also [[Spline|Spline]]). |
A consequence is that the Euler–Frobenius polynomials provide the coefficients of the local power series expansion of the function | A consequence is that the Euler–Frobenius polynomials provide the coefficients of the local power series expansion of the function | ||
− | + | \begin{equation*} w \rightarrow \frac { ( z - 1 ) e ^ { w } } { z ( z - e ^ { w } ) } , \quad z \in \mathbf{C}, \end{equation*} | |
− | which is meromorphic on the complex plane | + | which is meromorphic on the complex plane $\mathbf{C}$. |
− | The Euler–Frobenius polynomials | + | The Euler–Frobenius polynomials $( p _ { m } ( x ) ) _ { m \geq 1 }$ satisfy the three-term recurrence relation |
− | + | \begin{equation*} p _ { m + 1} ( x ) = ( m x + 1 ) p _ { m } ( x ) - x ( x - 1 ) p _ { m } ^ { \prime } ( x ) , \quad m \geq 1. \end{equation*} | |
− | A direct proof follows from the complex contour integral representations of the derivatives | + | A direct proof follows from the complex contour integral representations of the derivatives $( p _ { m } ^ { \prime } ( x ) ) _ { m \geq 1 }$, which can be derived from the complex contour integral representation given above for the Euler–Frobenius polynomials. |
− | The preceding recurrence relation opens a simple way to calculate the coefficients of the Euler–Frobenius polynomials | + | The preceding recurrence relation opens a simple way to calculate the coefficients of the Euler–Frobenius polynomials $( p _ { m } ( x ) ) _ { m \geq 1 }$ ([[#References|[a1]]], [[#References|[a3]]]). |
====References==== | ====References==== | ||
− | <table>< | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> L. Euler, "Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum" , Acad. Imper. Sci. Petropolitanæ (1775) (Opera Omnis Ser. I (Opera Math.), Vol. X, Teubner, 1913)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> F.G. Frobenius, "Über die Bernoullischen Zahlen und die Eulerschen Polynome" ''Sitzungsber. K. Preuss. Akad. Wissenschaft. Berlin'' (1910) pp. 809–847 (Gesammelte Abh. Vol. III, pp. 440-478, Springer 1968)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> W. Schempp, "Complex contour integral representation of cardinal spline functions" , ''Contemp. Math.'' , '''7''' , Amer. Math. Soc. (1982)</td></tr> | ||
+ | </table> |
Latest revision as of 07:27, 25 January 2024
The Euler–Frobenius polynomials $p _ { m } ( x )$ of degree $m - 1 \geq 0$ are characterized by the Frobenius reciprocal identity ([a1], [a2], [a3])
\begin{equation*} x ^ { m - 1 } p _ { m } \left( \frac { 1 } { x } \right) = p _ { m } ( x ). \end{equation*}
Thus, $p _ { m } ( x )$ is invariant under the reflection
\begin{equation*} x \rightarrow \frac { 1 } { x } \end{equation*}
of the indeterminate $x$. The best way to implement an invariance of this kind is to look for an appropriate space with which the Euler–Frobenius polynomials $( p _ { m } ( x ) ) _ { m \geq 1 }$ are attached in a spectral geometric way.
So, let $E$ denote a symplectic vector space of dimension $m = 2 n$ (cf. also Symplectic space). Then the characteristic polynomial of each symplectic automorphism of $E$ is an Euler–Frobenius polynomial $p _ { m } ( x )$ of odd degree $m - 1$.
The proof follows from the fact that the determinant of each symplectic automorphism $\sigma$ of $E$ equals $1$, so that there is a natural imbedding
\begin{equation*} \operatorname { Sp } ( E ) \hookrightarrow \operatorname { SL } ( E ). \end{equation*}
Thus, $\sigma \in \operatorname{Sp} ( E )$ preserves the symplectic volume spanned by $m$ vectors of the vector space $E$.
A consequence is that each eigenvalue $\lambda \neq 0$ of a symplectic endomorphism $\sigma$ of $E$ having multiplicity $k$ gives rise to a reciprocal eigenvalue $1 / \lambda$ of the same multiplicity $k$.
In view of the self-reciprocal eigenvalue
\begin{equation*} \lambda _ { 0 } = - 1 \end{equation*}
of $\sigma : E \rightarrow E$ for even $m = 2 n$, of course, spectral theory suggests a complex contour integral representation of the Euler–Frobenius polynomials $( p _ { m } ( x ) ) _ { m \geq 1 }$, as follows.
Let $z \neq 0$ denote a complex number such that $| z | \neq 1$. Let $P$ denote a path in the complex plane $\mathbf{C}$ which forms the boundary of a closed vertical strip in the open right or left half-plane of $\mathbf{C}$ according as $| z | > 1$ or $0 < | z | < 1$, respectively. Let $P \hookrightarrow \mathbf{C}$ be oriented so that its topological index satisfies $\operatorname { ind } _ { P } ( \operatorname { log } | z | ) = 1$. Then, for each integer $m \geq 1$, the complex contour integral representation
\begin{equation*} p _ { m } ( z ) = \frac { ( z - 1 ) ^ { m + 1 } } { z } \frac { m ! } { 2 \pi i } \int _ { P } \frac { e ^ { w } } { ( e ^ { w } - z ) w ^ { m + 1 } } d w \end{equation*}
holds.
The proof follows from the expansion
\begin{equation*} p _ { m } ( z ) = m ! \sum _ { 0 \leq n \leq m - 1 } b _ { m } ( n + 1 ) z ^ { n } , \quad z \in \mathbf{C}, \end{equation*}
with strictly positive integer coefficients, where $( b _ { m } ) _ { m \geq 0 }$ denote the basis spline functions (cf. [a3] and also Spline).
A consequence is that the Euler–Frobenius polynomials provide the coefficients of the local power series expansion of the function
\begin{equation*} w \rightarrow \frac { ( z - 1 ) e ^ { w } } { z ( z - e ^ { w } ) } , \quad z \in \mathbf{C}, \end{equation*}
which is meromorphic on the complex plane $\mathbf{C}$.
The Euler–Frobenius polynomials $( p _ { m } ( x ) ) _ { m \geq 1 }$ satisfy the three-term recurrence relation
\begin{equation*} p _ { m + 1} ( x ) = ( m x + 1 ) p _ { m } ( x ) - x ( x - 1 ) p _ { m } ^ { \prime } ( x ) , \quad m \geq 1. \end{equation*}
A direct proof follows from the complex contour integral representations of the derivatives $( p _ { m } ^ { \prime } ( x ) ) _ { m \geq 1 }$, which can be derived from the complex contour integral representation given above for the Euler–Frobenius polynomials.
The preceding recurrence relation opens a simple way to calculate the coefficients of the Euler–Frobenius polynomials $( p _ { m } ( x ) ) _ { m \geq 1 }$ ([a1], [a3]).
References
[a1] | L. Euler, "Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum" , Acad. Imper. Sci. Petropolitanæ (1775) (Opera Omnis Ser. I (Opera Math.), Vol. X, Teubner, 1913) |
[a2] | F.G. Frobenius, "Über die Bernoullischen Zahlen und die Eulerschen Polynome" Sitzungsber. K. Preuss. Akad. Wissenschaft. Berlin (1910) pp. 809–847 (Gesammelte Abh. Vol. III, pp. 440-478, Springer 1968) |
[a3] | W. Schempp, "Complex contour integral representation of cardinal spline functions" , Contemp. Math. , 7 , Amer. Math. Soc. (1982) |
Euler-Frobenius polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euler-Frobenius_polynomials&oldid=17228